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IMPORTS

from numpy import =*
from numpy.linalg import =*

from matplotlib.pyplot import =



ORDINARY DIFFERENTIAL
EQUATION (ODE)

The “simple” version:

t = f(z)
where:

o State:x € R"
e State space: R"
e Vector field: f : R™ — R".




More general versions:
e Time-dependent vector-field:
= f(t,z), t € I CR,

e £ € X, opensubset of R",

e x € X, n-dimensional manifold.



VECTOR FIELD

e Visualize f(x) as an arrow with origin the point x.
e Visualize f as a field of such arrows.

e Inthe plane (n = 2), use quiver from Matplotlib.


https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.quiver.html

HELPER

We define a Q function helper whose arguments are

o f:thevector field (a function)

e xs,ys: the coordinates (two 1d arrays)

and which returns:

e the tuple of arguments expected by quiver.



def Q(f, xs, ys):
X, Y = meshgrid(xs, ys)

fx = vectorize(lambda x, y: f([x, y.

fy = vectorize(lambda x, y: f([x, vy]
return X, Y, fx(X, Y), fy(X, Y)




ROTATION VECTOR FIELD
Consider f(z,y) = (—y, x).

def f(xy):

X, Y = XY
return array([-y, x]1)



VECTOR FIELD

figure()

X =y = linspace(-1.0, 1.0, 20)
ticks = [-1.0, 0.0, 1.0]
xticks(ticks); yticks(ticks)
gca().set_aspect(1.0)

quiver (*Q(f, x, y))
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ODE SOLUTION

A solution of & = f(x) is

e a(continuously) differentiable functionx : I — R",
e defined on a (possibly unbounded) interval I of R,
e such thatforeveryt € I,

(t) = da(t)/dt = f(z(t)).



STREAM PLOT

When n = 2, represent a diverse set of solutions in the
state space with streamplot

figure()

X =y = linspace(-1.0, 1.0, 20)
gca().set_aspect(1.0)

streamplot (xQ(f, x, y), color="k")


https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.streamplot.html




INITIAL VALUE PROBLEM (IVP)

Solutions x(t), fort > t, of

such that



The initial condition (g, () is made of

e theinitialtime {y € R and

e theinitial value orinitial state 5 € R".

The point (%) is the state at time .



HIGHER-ORDER ODES

(Scalar) differential equations whose structure is

M@t = g9(y, 9, 3, -, y" )

wheren > 1.



HIGHER-ORDER ODES

The previous n-th order ODE is equivalent to the first-
order ODE

= f(x), x € R"
with

FWos- s Yn2,Yn-1):= W1, Yn-1,9W0y - -+, Yn_1))-



The result is more obvious if we expand the first-order
equation:

Yo
U1

Y1
Y2

gn — g(y(b Y1y - - 7yn—1)



PENDULUM







1.

Establish the equations governing the pendulum
dynamics.



2.

Generalize the dynamics when there is a friction
torque ¢ = —bl forsome b > 0.



We denote w the pendulum angular velocity:

w:= 0.



3.

Transform the dynamics into a first-order ODE with
statex = (0, w).



4.

Draw the system stream plotwhenm =1,/ = 1,
g=9.81andb = 0.



5.

Determine least possible angular velocity wy > 0 such

that when 8(0) = 0 and 8(0) = wy, the pendulum
reaches (or overshoots) 8(t) = mforsomet > 0.



PENDULUM



1.

The pendulum total mechanical energy E is the sum
of its kinetic energy K and its potential energy V:

E=K+YV.



The kinetic energy depends on the mass velocity v:

1 1 :
K = Emvz — §m€292

The potential energy mass depends on the pendulum
elevation . If we set the reference y = 0 when the
pendulum is horizontal, we have

V =mgy = —mgf cos@



1 :
= EFE=K+V = §m€292—m920039.

If the system evolves without any energy dissipation,
: d [ 1 :
EF=— <§m€292 — mg¥ cos 0)

— ml?00 + mgl(sin 6)0
= 0

= ml%0 + mglsinh = 0.



2.

When there is an additional dissipative torque
c = —bl, we have instead

E = cO = —bb?

and thus

me%0 + b0 + mglsinf = 0.



3.

With w := 6’, the dynamics becomes

D.
|

W

w = —(b/ml*)w — (g/l)sinb



4.

m=1.0; b=0.0: 1=1.0; g=9.81

def f(theta_d_theta):
theta, d_theta = theta_d_theta
J=mx1x*1
d2_theta = - b / J * d_theta
d2_theta += - g / 1 * sin(theta)
return array([d_theta, d2_thetal)



figure()

theta = linspace(-1.5 * pi, 1.5 * pi, 100)
d_theta = linspace(-5.0, 5.0, 100)

labels [r"$-\pi$", "$0$", r"$\pis$"]
xticks([-pi, 0, pi], labels)

yticks([-5, 0, 5])

streamplot (*Q(f, theta, d_theta), color="k")
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5.

In the top vertical configuration, the total mechanical
energy of the pendulum is

1 : 1 .
B+ = §m£202 — mgl cos T = §m£202 + mg¥.

Hence we have at least B+ > mg/.



On the other hand, in the bottom configuration,

1 : 1 .
E, = Emﬁ%’z — mgl cos(0 = Emﬁzéﬂ — mgX.

Hence, without any loss of energy, the initial velocity

must satisfy £/| > L for the mass to reach the top
position.



That is

1 :
E, = Emﬁzﬁz —mgl > mgl = B~

: g
Ol > 2./ =.
H_ \/ﬁ

which leads to:



