
MODELS
Sébastien Boisgérault

1

mailto:Sebastien.Boisgerault@minesparis.psl.eu

CONTROL ENGINEERING WITH PYTHON

📖

©

🏦

Course Materials

License CC BY 4.0

ITN, Mines Paris - PSL University

2

https://github.com/boisgera/control-engineering-with-python
https://creativecommons.org/licenses/by/4.0/
https://itn.dev/

SYMBOLS
🐍 Code 🔍 Worked Example

📈 Graph 🧩 Exercise

🏷 Definition 💻 Numerical Method

💎 Theorem 🧮 Analytical Method

📝 Remark 🧠 Theory

ℹ Information 🗝 Hint

⚠ Warning 🔓 Solution

3

🐍 IMPORTS
from numpy import *

from numpy.linalg import *

from matplotlib.pyplot import *

4

🏷 ORDINARY DIFFERENTIAL
EQUATION (ODE)

The “simple” version:

where:

State:

State space:

Vector field: .

ẋ = f(x)

x ∈ R

n

R

n

f : R

n

→ R

n

5

More general versions:

Time-dependent vector-field:

, open subset of ,

, -dimensional manifold.

ẋ = f(t,x), t ∈ I ⊂ R,

x ∈ X R

n

x ∈ X n

6

🏷 VECTOR FIELD
Visualize as an arrow with origin the point .

Visualize as a field of such arrows.

In the plane (), use from Matplotlib.

f(x) x

f

n = 2 quiver

7

https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.quiver.html

🐍 HELPER
We define a Q function helper whose arguments are

f: the vector field (a function)

xs, ys: the coordinates (two 1d arrays)

and which returns:

the tuple of arguments expected by quiver.

8

def Q(f, xs, ys):

 X, Y = meshgrid(xs, ys)

 fx = vectorize(lambda x, y: f([x, y])[0])

 fy = vectorize(lambda x, y: f([x, y])[1])

return X, Y, fx(X, Y), fy(X, Y)

9

🔍 ROTATION VECTOR FIELD
Consider f(x, y) = (−y,x).

def f(xy):

 x, y = xy

return array([-y, x])

10

📈 VECTOR FIELD

figure()

x = y = linspace(-1.0, 1.0, 20)

ticks = [-1.0, 0.0, 1.0]

xticks(ticks); yticks(ticks)

gca().set_aspect(1.0)

quiver(*Q(f, x, y))

11

12

🏷 ODE SOLUTION
A solution of is

a (continuously) differentiable function

defined on a (possibly unbounded) interval of ,

such that for every

ẋ = f(x)

x : I → R

n

,

I R

t ∈ I,

ẋ(t) = dx(t)/dt = f(x(t)).

13

📈 STREAM PLOT
When , represent a diverse set of solutions in the
state space with

n = 2

streamplot

figure()

x = y = linspace(-1.0, 1.0, 20)

gca().set_aspect(1.0)

streamplot(*Q(f, x, y), color="k")

14

https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.streamplot.html

15

🏷 INITIAL VALUE PROBLEM (IVP)
Solutions , for , of

such that

x(t) t ≥ t

0

ẋ = f(x)

x(t

0

) = x

0

∈ R

n

.

16

🏷
The initial condition is made of

the initial time and

the initial value or initial state .

The point is the state at time .

(t

0

,x

0

)

t

0

∈ R

x

0

∈ R

n

x(t) t

17

🏷 HIGHER-ORDER ODES
(Scalar) differential equations whose structure is

where .

y

(n)

(t) = g(y, ẏ, ÿ,… , y

(n−1)

)

n > 1

18

💎 HIGHER-ORDER ODES
The previous -th order ODE is equivalent to the first-
order ODE

with

n

ẋ = f(x), x ∈ R

n

f(y

0

,… , y

n−2

, y

n−1

) := (y

1

,… , y

n−1

, g(y

0

,… , y

n−1

)).

19

🗝
The result is more obvious if we expand the first-order
equation:

ẏ

0

= y

1

ẏ

1

= y

2

⋮ ⋮ ⋮

ẏ

n

= g(y

0

, y

1

,… , y

n−1

)

20

🧩 PENDULUM

21

0:00 / 0:10 22

1. 🧠 🧮
Establish the equations governing the pendulum
dynamics.

23

2. 🧠 🧮
Generalize the dynamics when there is a friction
torque for some .c = −b

˙

θ b ≥ 0

24

We denote the pendulum angular velocity:ω

ω :=

˙

θ.

25

3. 🧠 🧮
Transform the dynamics into a first-order ODE with
state .x = (θ,ω)

26

4. 📈
Draw the system stream plot when , ,

 and .
m = 1 ℓ = 1

g = 9.81 b = 0

27

5. 🧠 🧮
Determine least possible angular velocity such
that when and , the pendulum
reaches (or overshoots) for some .

ω

0

> 0

θ(0) = 0

˙

θ(0) = ω

0

θ(t) = π t > 0

28

🔓 PENDULUM

29

1. 🔓
The pendulum total mechanical energy is the sum
of its kinetic energy and its potential energy :

E

K V

E = K + V .

30

The kinetic energy depends on the mass velocity :

The potential energy mass depends on the pendulum
elevation . If we set the reference when the
pendulum is horizontal, we have

v

K =

1

2

mv

2

=

1

2

mℓ

2

˙

θ

2

y y = 0

V = mgy = −mgℓ cos θ

31

If the system evolves without any energy dissipation,

⇒ E = K + V =

1

2

mℓ

2

˙

θ

2

−mgℓ cos θ.

˙

E =

d

dt

(

1

2

mℓ

2

˙

θ

2

−mgℓ cos θ)

= mℓ

2

˙

θ

¨

θ+mgℓ(sin θ)

˙

θ

= 0

⇒ mℓ

2

¨

θ+mgℓ sin θ = 0.

32

2. 🔓
When there is an additional dissipative torque

, we have instead

and thus

c = −bθ

˙

E = c

˙

θ = −b

˙

θ

2

mℓ

2

¨

θ + b

˙

θ + mgℓ sin θ = 0.

33

3. 🔓
With , the dynamics becomesω :=

˙

θ

˙

θ = ω

ω̇ = −(b/mℓ

2

)ω − (g/ℓ) sin θ

34

4. 🔓

m=1.0; b=0.0; l=1.0; g=9.81

def f(theta_d_theta):

 theta, d_theta = theta_d_theta

 J = m * l * l

 d2_theta = - b / J * d_theta

 d2_theta += - g / l * sin(theta)

return array([d_theta, d2_theta])

35

📈

figure()

theta = linspace(-1.5 * pi, 1.5 * pi, 100)

d_theta = linspace(-5.0, 5.0, 100)

labels = [r"$-\pi$", "0", r"π"]

xticks([-pi, 0, pi], labels)

yticks([-5, 0, 5])

streamplot(*Q(f, theta, d_theta), color="k")

36

37

5. 🔓
In the top vertical configuration, the total mechanical
energy of the pendulum is

Hence we have at least .

E

⊤

=

1

2

mℓ

2

˙

θ

2

− mgℓ cosπ =

1

2

mℓ

2

˙

θ

2

+ mgℓ.

E

⊤

≥ mgℓ

38

On the other hand, in the bottom configuration,

Hence, without any loss of energy, the initial velocity
must satisfy for the mass to reach the top
position.

E

⊥

=

1

2

mℓ

2

˙

θ

2

− mgℓ cos 0 =

1

2

mℓ

2

˙

θ

2

− mgℓ.

E

⊥

≥ E

⊤

39

That is

which leads to:

E

⊥

=

1

2

mℓ

2

˙

θ

2

− mgℓ ≥ mgℓ = E

⊤

|

˙

θ| ≥ 2
√

g

ℓ

.

40

