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🐍 IMPORTS
from numpy import *

from numpy.linalg import *

from scipy.integrate import solve_ivp

from matplotlib.pyplot import *
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🐍 STREAM PLOT HELPER
def Q(f, xs, ys):

    X, Y = meshgrid(xs, ys)

    fx = vectorize(lambda x, y: f([x, y])[0])

    fy = vectorize(lambda x, y: f([x, y])[1])

return X, Y, fx(X, Y), fy(X, Y)
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🏷 WELL-POSEDNESS
Make sure that a system is “sane” (not “pathological”):

Well-Posedness:

Existence +
Uniqueness +
Continuity.

We will define and study each one in the sequel.
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LOCAL VS GLOBAL
So far, we have mostly dealt with global solutions 
of IVPs, defined for any .

This concept is sometimes too stringent.

x(t)

t ≥ t

0
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🔍 FINITE-TIME BLOW-UP
Consider the IVP

ẋ = x

2

, x(0) = 1.
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🐍 💻 📈

def fun(t, y):

return y * y

t0, tf, y0 = 0.0, 3.0, array([1.0])

result = solve_ivp(fun, t_span=[t0, tf], y0=y0)

figure()

plot(result["t"], result["y"][0], "k")

xlim(t0, tf); xlabel("$t$"); ylabel("$x(t)$")
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LOCAL VS GLOBAL
🤕 Ouch.

There is actually no global solution.

However there is a local solution ,

defined for 

for some .

x(t)

t ∈ [t

0

, τ[

τ > t

0
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Indeed, the function  satisfies

and 

⚠ But it’s defined (continuously) only for 

x(t) :=

1

1 − t

ẋ(t) =

d

dt

x(t) = −

−1

(1 − t)

2

= (x(t))

2

x(0) = 1.

t < 1.
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🐍 💻 📈

tf = 1.0

r = solve_ivp(fun, [t0, tf], y0,

              dense_output=True)

figure()

t = linspace(t0, tf, 1000)

plot(t, r["sol"](t)[0], "k")

ylim(0.0, 10.0); grid();

xlabel("$t$"); ylabel("$x(t)$")
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This local solution is also maximal:

You cannot extend this solution beyond .τ = 1.0
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🏷 LOCAL SOLUTION
A solution  of the IVP

is (forward and) local if  for some  such
that .

x : I → R

n

ẋ = f(x), x(t

0

) = x

0

I = [t

0

, τ[ τ

t

0

< τ ≤ +∞
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🏷 GLOBAL SOLUTION
A solution  of the IVP

is (forward and) global if .

x : I → R

n

ẋ = f(x), x(t

0

) = x

0

I = [t

0

, +∞[
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🏷 MAXIMAL SOLUTION
A (local) solution  to an IVP is maximal if
there is no other solution

defined on  with ,

whose restriction to  is .

x : [0, τ[

[0, τ

′

[ τ

′

> τ

[0, τ[ x

18



🧩 MAXIMAL SOLUTIONS
Consider the IVP

ẋ = x

2

, x(0) = x

0

≠ 0.
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1. 🧮
Find a closed-formed local solution  of the IVP.

🗝 Hint: assume that  then compute

x(t)

x(t) ≠ 0

d

dt

1

x(t)

.
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2. 🧠
Make sure that your solutions are maximal.
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🔓 MAXIMAL SOLUTIONS
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1. 🔓
As long as ,x(t) ≠ 0

d

dt

1

x(t)

= −

ẋ(t)

x(t)

2

= 1.
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By integration, this leads to

and thus provides

which is indeed a solution as long as the denominator
is not zero.

1

x(t)

−

1

x

0

= −t

x(t) =

1

1

x

0

− t

=

x

0

1 − x

0

t

.
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2. 🔓

If , this solution is valid for all  and thus
maximal.

If , the solution is defined until 
where it blows up. Thus, this solution is also
maximal.

x

0

< 0 t ≥ 0

x

0

> 0 t = 1/x(0)
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🙁 BAD NEWS (1/3)
Sometimes things get worse than simply having no
global solution.
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🔍 NO LOCAL SOLUTION
Consider the scalar IVP with initial value

 and right-hand sidex(0) = (0, 0)

f(x

1

,x

2

) =

∣
(+1, 0) if  x

1

< 0

(−1, 0) if  x

1

≥ 0.
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🐍 📈 NO LOCAL SOLUTION

def f(x1x2):

    x1, x2 = x1x2

    dx1 = 1.0 if x1 < 0.0 else -1.0

return array([dx1, 0.0])

figure()

x1 = x2 = linspace(-1.0, 1.0, 20)

gca().set_aspect(1.0)

quiver(*Q(f, x1, x2), color="k")
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💎 NO LOCAL SOLUTION
This system has no solution, not even a local one,
when .x(0) = (0, 0)
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🧠 PROOF

Assume that  is a local solution.

Since , for some small enough
 and any , we have .

Consequently,  and thus by integration

which is a contradiction.

x : [0, τ[→ R

ẋ(0) = −1 < 0

0 < ϵ < τ t ∈ ]0, ϵ] x(t) < 0

ẋ(t) = +1

x(ϵ) = x(0) + ∫

ϵ

0

ẋ(t) dt = ϵ > 0,
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🙂 GOOD NEWS (1/3)
However, a local solution exists under very mild
assumptions.
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💎 EXISTENCE
If  is continuous,

There is a (at least one) local solution to the IVP

 and .

Any local solution on some  can be extended
to a (at least one) maximal one on some .

📝 Note: a maximal solution is global iff .

f

ẋ = f(x) x(t

0

) = x

0

[t

0

, τ[

[t

0

, t

∞

[

t

∞

= +∞
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💎 MAXIMAL SOLUTIONS
A solution on  is maximal if and only if either

 : the solution is global, or

 and 

In plain words : a non-global solution cannot be
extended further in time if and only if it “blows up”.

[t

0

, τ[

τ = +∞

τ < +∞ lim

t→τ

∥x(t)∥ = +∞.
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💎 COROLLARY
Let’s assume that a local maximal solution exists.

You wonder if this solution is defined in  or
blows up before .

For example, you wonder if a solution is global (if
 or .)

[t

0

, t

f

[

t

f

t

f

= +∞ t

f

< +∞
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🧠 PROVE EXISTENCE
Task. Show that any solution which defined on some
sub-interval  with  would is bounded.

Then, no solution can be maximal on any such 
(since it doesn’t blow up !). Since a maximal solution
does exist, its domain is  with .

 a solution is defined on .

[t

0

, τ] τ < t

f

[0, τ[

[0, t

∞

[ t

∞

≥ t

f

⇒ [t

0

, t

f

[
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🧩 SIGMOID
Consider the dynamical system

ẋ = σ(x) :=

1

1 + e

−x

.
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📈

def sigma(x):

return 1 / (1 + exp(-x))

figure()

x = linspace(-7.0, 7.0, 1000)

plot(x, sigma(x), label="$y=\sigma(x)$")

grid(True)
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1. 🧮 EXISTENCE
Show that there is a (at least one) maximal solution to
each initial condition.
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2. 🧮 GLOBAL
Show that any such solution is global.
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🔓 SIGMOID
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1. 🔓 EXISTENCE
The sigmoid function  is continuous.

Consequently,  proves the existence of a
(at least one) maximal solution.

σ

💎 Existence
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2. 🔓 GLOBAL
Let  be a maximal solution to the IVP.
We have

and by integration,

Thus, it cannot blow-up in finite time; by 
, it is global.

x : [0, τ[ → R

0 ≤ ẋ(t) = σ(x(t)) ≤ 1, 0 ≤ t < τ

|x(t)| ≤ |x(0)| + t

💎 Maximal
Solutions
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🧩 PENDULUM
Consider the pendulum, subject to a torque 

We assume that the torque provides a bounded power:

c

ml

2

¨

θ+ b

˙

θ+mgℓ sin θ = c(θ,

˙

θ)

P := c(θ,

˙

θ)

˙

θ ≤ P

M

< +∞.

45



1. 🧮
Show that for any initial state, there is a global
solution .

🗝 Hint. Compute the derivative with respect to  of

(θ,

˙

θ)

t

E =

1

2

mℓ

2

˙

θ

2

− mgℓ cos θ.
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🔓 PENDULUM
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1. 🔓
Since the system vector field

is continuous,  yields the existence of a (at
least one) maximal solution.

(θ,

˙

θ) → (

˙

θ, (−b/mℓ

2

)

˙

θ− (g/ℓ) sin θ+ c(θ,

˙

θ)/mℓ

2

)

💎 Existence
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Additionally,

˙

E =

d

dt

(

1

2

mℓ

2

˙

θ

2

−mgℓ cos θ)

= −b

˙

θ

2

+ c(θ,

˙

θ)

˙

θ

≤ P

M

< +∞.
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By integration

Hence, since ,

E(t) =

1

2

mℓ

2

˙

θ

2

(t) −mgℓ cos θ(t) ≤ E(0) + P

M

t

| cos θ(t)| ≤ 1

|

˙

θ(t)| ≤

√

2E(0)

mℓ

2

+

2g

ℓ

+

2P

M

mℓ

2

t
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Thus,  cannot blow-up in finite time. Since

 cannot blow-up in finite time either.

By , any maximal solution is
global.

˙

θ(t)

|θ(t)| ≤ |θ(0)| + ∫

t

0

|

˙

θ(s)| ds,

θ(t)

💎 Maximal Solutions
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🧩 LINEAR SYSTEMS
Let .

Consider the dynamical system

A ∈ R

n×n

ẋ = Ax, x ∈ R

n

.
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1. 🧮
Show that

is differentiable and satisfies

for some . 

y(t) := ∥x(t)∥

2

ẏ(t) ≤ 2αy(t)

α ≥ 0 🔓
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2. 🧮
Let

Compute  and deduce that

z(t) := y(t)e

−2αt

.

ż(t)

0 ≤ y(t) ≤ y(0)e

2αt

.
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3. 🧮
Prove that for any initial state  there is a
corresponding global solution . 

x(0) ∈ R

n

x(t) 🔓
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🔓 LINEAR SYSTEMS
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1. 🔓
By definition of  and since ,y(t) ẋ(t) = Ax(t)

ẏ(t) =

d

dt

∥x(t)∥

2

=

d

dt

x(t)

t

x(t)

= ẋ(t)

t

x(t) + x(t)

t

ẋ(t)

= x(t)

t

A

t

x(t) + x(t)

t

Ax(t).
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Let  denote the largest  of  (i.e. the
operator norm ).

For any vector , we have

α singular value A

∥A∥

α := σ

max

(A) = ∥A∥.

u ∈ R

n

∥Au∥ ≤ ∥A∥∥u∥.
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By the  and the 
, we obtain

and thus  with 

triangle inequality Cauchy-Schwarz
inequality

ẏ(t) = ∥x(t)

t

A

t

x(t) + x(t)

t

Ax(t)∥

≤ ∥(Ax(t))

t

x(t)∥ + ∥x(t)

t

(Ax(t))∥

≤ ∥Ax(t)∥∥x(t)∥ + ∥x(t)∥∥Ax(t)∥

≤ ∥A∥∥x(t)∥∥x(t)∥ + ∥x(t)∥∥A∥∥x(t)∥

= 2∥A∥y(t)

ẏ(t) ≤ 2αy(t) α := ∥A∥.
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2. 🔓
Since , the inequality  is
clear.

Since ,

y(t) = ∥x(t)∥

2

0 ≤ y(t)

z(t) = y(t)e

−2αt

ż(t) =

d

dt

y(t)e

−2αt

= ẏ(t)e

−2αt

+ y(t)(−2αe

−αt

)

= (ẏ(t) − 2αy(t))e

−2αt

≤ 0.
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By integration

hence

y(t)e

−2αt

= z(t) = z(0) + ∫

t

0

ż(s) ds

≤ z(0) = y(0),

y(t) ≤ y(0)e

2αt

.
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3. 🔓
The vector field

is continuous, thus by  there is a maximal
solution  for any initial state 

x ∈ R

n

→ Ax

💎 Existence
x : [0, t

∞

[ x(0).
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Moreover,

Hence there is no finite-time blow-up and the maximal
solution is global.

∥x(t)∥ =

√

∥y(t)∥ ≤

√

y(0)e

2αt

= ∥x(0)∥e

αt

.
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🏷 UNIQUENESS
In the current context, uniqueness means uniqueness
of the maximal solution to an IVP.
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🙁 BAD NEWS (2/3)
Uniqueness of solutions, even the maximal ones, is not
granted either.
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🔍 NON-UNIQUENESS
The IVP

has several maximal (global) solutions.

ẋ =
√
x, x(0) = 0
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PROOF
For any ,  is a solution:τ ≥ 0 x

τ

x

τ

(t) =

∣
0 if t ≤ τ,

1/4 × (t− τ)

2

if t > τ.
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🙂 GOOD NEWS (2/3)
However, uniqueness of maximal solution holds under
mild assumptions.
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🏷 JACOBIAN MATRIX

Jacobian matrix of :

x = (x

1

,… ,x

n

), f(x) = (f

1

(x),… , f

n

(x)).

f

∂f

∂x

:=

⎡

⎢
⎣

∂f

1

∂x

1

⋯

∂f

1

∂x

n

⋮ ⋮ ⋮

∂f

n

∂x

1

⋯

∂f

n

∂x

n

⎤

⎥
⎦
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💎 UNIQUENESS
If  exists and is continuous, the maximal
solution is unique.
∂f/∂x

70



🙁 BAD NEWS (3/3)
An infinitely small error in the initial value could result
in a finite error in the solution, even in finite time.

That would severely undermine the utility of any
approximation method.
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🏷 CONTINUITY
Instead of denoting  the solution, use  to
emphasize the dependency w.r.t. the initial state.

Continuity w.r.t. the initial state means that if
 is defined on  and :

and that this convergence is uniform w.r.t. .

x(t) x(t,x

0

)

x(t,x

0

) [t

0

, τ] t ∈ [t

0

, τ]

x(t, y) → x(t,x

0

) when y → x

0

t
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🙂 GOOD NEWS (3/3)
However, continuity w.r.t. the initial value holds under
mild assumptions.
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💎 CONTINUITY
Assume that  exists and is continuous.

Then the dynamical system is continous w.r.t. the
initial state.

∂f/∂x
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🔍 PREY-PREDATOR
Let

with , , .

ẋ = αx− βxy

ẏ = δxy− γy

α = 2/3 β = 4/3 δ = γ = 1.0
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🐍

alpha = 2 / 3; beta = 4 / 3; delta = gamma = 1.0

def fun(t, y):

    x, y = y

    u = alpha * x - beta * x * y

    v = delta * x * y - gamma * y

return array([u, v])
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💻

tf = 3.0

result = solve_ivp(

  fun, 

  t_span=(0.0, tf), 

  y0=[1.5, 1.5], 

  max_step=0.01)

x, y = result["y"][0], result["y"][1]
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📈

def display_streamplot():

    ax = gca()

    xr = yr = linspace(0.0, 2.0, 1000)

def f(y):

return fun(0, y)

    streamplot(*Q(f, xr, yr), color="grey")
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📈

def display_reference_solution():

for xy in zip(x, y):

        x_, y_ = xy

        gca().add_artist(Circle((x_, y_), 

0.2, color="#d3d3d3"))

    gca().add_artist(Circle((x[0], y[0]), 0.1, 

                     color="#808080"))

    plot(x, y, "k")
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📈

def display_alternate_solution():

    result = solve_ivp(fun, 

                       t_span=[0.0, tf],

                       y0=[1.5, 1.575], 

                       max_step=0.01)

    x, y = result["y"][0], result["y"][1]

    plot(x, y, "k--")
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📈

figure()

display_streamplot()

display_reference_solution()

display_alternate_solution()

axis([0,2,0,2]); axis("square")
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🧩 CONTINUITY
Let  and  be the solution of the IVPh ≥ 0 x

h

(t)

ẋ = x, x

h

(0) = 1 + h.
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1. 🧮
Let  and .

Find the largest  such that  ensures that

ϵ > 0 τ ≥ 0

δ > 0 |h| < δ

for any t ∈ [t

0

, τ], |x

h

(t) − x

0

(t)| ≤ ϵ
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2. 🧮
What is the behavior of  when  goes to infinity?δ τ
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🔓 CONTINUITY
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2. 🔓
The solution  to the IVP is

Hence,

x

h

(t)

x

h

(t) = (1 + h)e

t

.

|x

h

(t) − x

0

(t)| = |(1 + h)e

t

− e

t

| = |h|e

t

max

t∈[0,τ]

|x

h

(t) − x

0

(t)| = |h|e

τ

.
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Thus, the smallest  such that  yields

is 

δ |h| ≤ δ

max

t∈[0,τ]

|x

h

(t) − x

0

(t)| ≤ ϵ.

δ = εe

−τ

.
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2. 🔓
For any ,ε > 0

lim

τ→+∞

δ = 0.
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🧩 CONTINUITY ISSUES
Consider the IVP

ẋ =

√

|x|, x(0) = x

0

∈ R.
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1. 💻 📈
Solve numerically this IVP for  and 
and plot the result.

Then, solve it again for , , etc. and
plot the results.

t ∈ [0, 1] x

0

= 0

x

0

= 0.1 x

0

= 0.01
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2. 🔬
Does the solution seem to be continuous with respect
to the initial value?
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3. 🧠
Explain this experimental result.
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🔓 CONTINUITY ISSUES
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1. 🔓

def fun(t, y):

  x = y[0]

  dx = sqrt(abs(y))

return [dx]

tspan = [0.0, 3.0]

t = linspace(tspan[0], tspan[1], 1000)

95



figure()

for x0 in [0.1, 0.01, 0.001, 0.0001, 0.0]:

    r = solve_ivp(fun, tspan, [x0], 

        dense_output=True)

    plot(t, r["sol"](t)[0], 

         label=f"$x_0 = {x0}$")

xlabel("$t$"); ylabel("$x(t)$")

legend()
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2. 🔓
The solution does not seem to be continuous with
respect to the initial value since the graph of the
solution seems to have a limit when , but
this limit is different from  which is the
numerical solution when .

x

0

→ 0

+

x(t) = 0

x

0

= 0
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3. 🔓
The jacobian matrix of the vector field is not defined
when , thus the continuity was not guaranted to
begin with. Actually, uniqueness of the solution does
not even hold here, see . The
function  is valid when , but so is

and the numerical solution seems to converge to the
second one when .

x = 0

🔍 Non-Uniqueness
x(t) = 0 x

0

= 0

x(t) =

1

4

t

2

x

0

→ 0

+
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🧩 PREY-PREDATOR
Consider the system

where , ,  and  are positive.

ẋ = αx− βxy

ẏ = δxy− γy

α β δ γ

100



1. 🧮
Prove that the system is well-posed.
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2. 🧮 🧠
Prove that all maximal solutions such that 
and  are global and satify  and

 for every .

Hint 🗝. Compute the ODE satisfied by  and
 and then the derivative w.r.t. time of

x(0) > 0

y(0) > 0 x(t) > 0

y(t) > 0 t ≥ 0

u = lnx

v = ln y

V := δe

u

− γu+ βe

v

− αv.
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🔓 PREY-PREDATOR
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🔓 1.
The jacobian matrix of the system vector field

is defined and continuous:

thus the sytem is well-posed.

f(x, y) = (αx− βxy, δxy− γy)

∂f

∂(x, y)

= [ ]

α− βy −βx

δy δx− γ
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🔓 2.
The (continuously differentiable) change of variable

is a bijection between  and .

F : (x, y) ↦ (u, v) := (lnx, ln y)

]0,+∞[

2

R

2
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Since

the prey-predator ODE is equivalent to

d

dt

lnx =

ẋ

x

,

d

dt

ln y =

ẏ

y

u̇ = α− βe

v

v̇ = δe

u

− γ
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Accordingly,

Therefore  is constant.

d

dt

V = δe

u

u̇− γu̇+ βe

v

v̇− αv̇

= (δe

u

− γ)u̇+ (βe

v

− αv̇)

= (δe

u

− γ)(α− βe

v

) + (βe

v

− α)(δe

u

− γ)

= 0

V (u(t), v(t))
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Now, the function

are continuous and

As ,

ϕ(u) := δe

u

− γu, ψ(v) := βe

v

− αv

lim

|u|→+∞

ϕ(u) = +∞, lim

|v|→+∞

ϕ(v) = +∞.

V (u, v) = ϕ(u) + ψ(v)

lim

∥(u,v)∥→+∞

V (u, v) = +∞.
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Consequently, since  is constant, the
solution  cannot blow up (either in finite
or infinite time).

Therefore the solution  is global as is the
solution in the original variables .

Since  and the domain of  is
,  and  for any .

V (x(t), y(t))

(u(t), v(t))

(u(t), v(t))

(x(t), y(t))

(x, y) = F

−1

(u, v) F

]0, +∞[

2

x(t) > 0 y(t) > 0 t ≥ 0
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