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🐍 IMPORTS
from numpy import *

from numpy.linalg import *

from scipy.linalg import *

from matplotlib.pyplot import *

from mpl_toolkits.mplot3d import *

from scipy.integrate import solve_ivp
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🐍 STREAMPLOT HELPER
def Q(f, xs, ys):

    X, Y = meshgrid(xs, ys)

    v = vectorize

    fx = v(lambda x, y: f([x, y])[0])

    fy = v(lambda x, y: f([x, y])[1])

return X, Y, fx(X, Y), fy(X, Y)
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🧭 PREAMBLE
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🏷️ NON-AUTONOMOUS SYSTEMS
Their structure is

where  and , that is

ẋ = f(x,u)

x ∈ R

n

u ∈ R

m

f : R

n

× R

m

→ R

n

.
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🏷️ INPUTS
The vector-valued  is the system input.

This quantity may depend on the time 

(actually it may also depend on some state, but we will
adress this later).

u

t

u : t ∈ R ↦ u(t) ∈ R

m

,
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📝
A solution of

is merely a solution of

where

ẋ = f(x,u), x(t

0

) = x

0

ẋ = h(t,x), x(t

0

) = x

0

,

h(t,x) := f(x,u(t)).
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🏷️ OUTPUTS
We may complement the system dynamics with an
equation

The vector  refers to the systems output, usually the
quantities that we can effectively measure in a system
(the state  itself may be unknown).

y = g(x,u) ∈ R

p

y

x
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🧭 LINEAR SYSTEMS
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STANDARD FORM
Input , state , output .u ∈ R

m

x ∈ R

n

y ∈ R

p

ẋ = Ax+Bu

y = Cx+Du
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MATRIX SHAPE
, , , .A ∈ R

n×n

B ∈ R

n×m

C ∈ R

p×n

D ∈ R

p×m

[ ]

A B

C D
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💎 WELL-POSEDNESS
When ,

The vector field  is continuously differentiable

 The system is well-posed.

u = 0

ẋ = Ax =: f(x) ⇒

∂f

∂x

(x) = A

f

⇒
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💎 EQUILIBRIUM
When , since

 the origin  is always an equilibrium.

(the only one in the state space if  is invertible).

u = 0

ẋ = Ax =: f(x)

f(0) = A0 = 0

⇒ x = 0

A
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🤔 WHY “LINEAR” ?
Assume that:

, ,

, ,

ẋ

1

= Ax

1

+Bu

1

x

1

(0) = x

10

ẋ

2

= Ax

2

+Bu

2

x

2

(0) = x

20
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Set

 and

.

for some  and .

u

3

= λu

1

+ μu

2

x

30

= λx

10

+ μx

20

λ μ
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Then, if

we have

x

3

= λx

1

+ μx

2

,

ẋ

3

= Ax

3

+Bu

3

, x

3

(0) = x

30

.
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💎 DYNAMICS DECOMPOSITION
The solution of

is the sum  where

 is the solution to the internal dynamics and

 is the solution to the external dynamics.

ẋ = Ax+Bu, x(0) = x

0

x(t) = x

1

(t) + x

2

(t)

x

1

(t)

x

2

(t)
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🏷️ INTERNAL/EXTERNAL
The internal dynamics is controlled by the initial
value  only (there is no input, ).

The external dynamics is controlled by the input
 only (the system is initially at rest, ).

x

0

u = 0

ẋ

1

= Ax

1

, x

1

(0) = x

0

,

u(t) x

0

= 0

ẋ

2

= Ax

2

+Bu, x

2

(0) = 0.
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🏷️ LTI SYSTEMS
These systems are actually linear and time-invariant
(hence LTI) systems. Time-invariant means that when

 is a solution of

then  is a solution of

x(t)

ẋ = Ax+Bu, x(0) = x

0

,

x(t− t

0

)

ẋ = Ax+Bu(t− t

0

), x(t

0

) = x

0

.
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🔍 HEAT EQUATION
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SIMPLIFIED MODEL
Four cells numbered 1 to 4 are arranged in a row.

The first cell has a heat source, the last one a
temperature sensor.

The heat sink/source is increasing the temperature
of its cell of  degrees by second.

If the temperature of a cell is  and the one of a
neighbor is ,  increases of  by second.

u

T

T

n

T T

n

− T
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Given the geometric layout:

dT

1

/dt = u+ (T

2

− T

1

)

dT

2

/dt = (T

1

− T

2

) + (T

3

− T

2

)

dT

3

/dt = (T

2

− T

3

) + (T

4

− T

3

)

dT

4

/dt = (T

3

− T

4

)

y = T

4
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Set .

The model is linear and its standard matrices are:

x = (T

1

,T

2

,T

3

,T

4

)

A =

⎡

⎢
⎣

−1 1 0 0

1 −2 1 0

0 1 −2 1

0 0 1 −1

⎤

⎥
⎦
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B = , C = [ ], D = [0]

⎡

⎢
⎣

1

0

0

0

⎤

⎥
⎦

0 0 0 1
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🧭 LINEARIZATION
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NONLINEAR TO LINEAR
Consider the nonlinear system

ẋ = f(x,u)

y = g(x,u)
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Assume that  is an equilibrium when  (cst):

and let

x

e

u = u

e

f(x

e

,u

e

) = 0

y

e

:= g(x

e

,u

e

).
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Define the error variables

,

 and

.

Δx := x− x

e

Δu := u− u

e

Δy := y− y

e
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As long as the error variables stay small

f(x,u) ≃

0

f(x

e

,u

e

) +

∂f

∂x

(x

e

,u

e

)Δx+

∂f

∂u

(x

e

,u

e

)Δu



g(x,u) ≃

y

e

g(x

e

,u

e

) +

∂g

∂x

(x

e

,u

e

)Δx+

∂g

∂u

(x

e

,u

e

)Δu


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Hence, the error variables satisfy approximately

with

d(Δx)/dt = AΔx+BΔu

Δy = CΔx+DΔu

[ ] = [ ](x

e

,u

e

)

A B

C D

∂f

∂x

∂f

∂u

∂g

∂x

∂g

∂u
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🔍 EXAMPLE
The system

has an equilibrium at .

ẋ = −2x+ y

3

ẏ = −2y+ x

3

(0, 0)
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The corresponding error variables satisfy  and
, thus

Δx = x

Δy = y

dΔx

dt

= ẋ = −2x+ y

3

= −2Δx+ (Δy)

3

≈ −2Δx

dΔy

dt

= ẏ = −2y+ x

3

= −2Δy+ (Δx)

3

≈ −2Δy
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ẋ = −2x+ y

3

ẏ = −2y+ x

3

→

ẋ ≈ −2x

ẏ ≈ −2y
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🐍 VECTOR FIELDS

def f(xy):

    x, y = xy

    dx = -2*x + y**3

    dy = -2*y + x**3

return array([dx, dy])
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def fl(xy):

    x, y = xy

    dx = -2*x

    dy = -2*y

return array([dx, dy])
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📈 STREAM PLOT

figure()

x = y = linspace(-1.0, 1.0, 1000)

streamplot(*Q(f, x, y), color="k")

blue_5 = "#339af0"

streamplot(*Q(fl, x, y), color=blue_5) 

plot([0], [0], "k.", ms=10.0)

axis("square")

axis("off")
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🔍 LINEARIZATION
Consider

If we set , the system has an equilibrium at
 (and also  but we focus on the

former) and the corresponding  is .

ẋ = −x

2

+ u, y = xu

u

e

= 1

x

e

= 1 x

e

= −1

y y

e

= x

e

u

e

= 1
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Around this configuration , we have

and

(x

e

,u

e

) = (1, 1)

∂(−x

2

+ u)

∂x

= −2x

e

= −2,

∂(−x

2

+ u)

∂u

= 1,

∂xu

∂x

= u

e

= 1,

∂xu

∂u

= x

e

= 1.
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Thus, the approximate, linearized dynamics around
this equilibrium is

d(x− 1)/dt = −2(x− 1) + (u− 1)

y− 1 = (x− 1) + (u− 1)
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💎 ASYMPTOTIC STABILITY
The equilibrium  is locally asymptotically stable for

where 

The equilibrium  is locally asymptotically stable for

0

dΔx

dt

= AΔx

A = ∂f(x

e

,u

e

)/∂x.

⇒

x

e

ẋ = f(x,u

e

).
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⚠️ CONVERSE RESULT
The converse is not true : the nonlinear system may
be asymptotically stable but not its linearized
approximation (e.g. consider ).

If we replace local asymptotic stability with local
exponential stability, the requirement that locally

for some  and , then it works.

ẋ = −x

3

∥x(t) − x

e

∥ ≤ Ae

−σt

∥x(0) − x

e

∥

A > 0 σ > 0
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🧩 PENDULUM
A pendulum submitted to a torque  is governed by

We assume that only the angle  is measured.

c

mℓ

2

¨

θ+ b

˙

θ+mgℓ sin θ = c.

θ
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1. 🧮
Let ,  and .

What are the function  and  that determine the
nonlinear dynamics of the pendulum?

x = (θ,

˙

θ) u = c y = θ

f g
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2. 🧮
Show that for any angle  there is a constant value 
of the torque such that  is an equilibrium.

θ

e

c

e

x

e

= (θ

e

, 0)
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3. 🧮
Compute the linearized dynamics of the pendulum
around this equilibrium and put it in the standard form
(compute , ,  and ).A B C D
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🔓 PENDULUM
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1. 🔓
The 2nd-order differential equation

is equivalent to the first-order differential equation

mℓ

2

¨

θ+ b

˙

θ+mgℓ sin θ = c.

d

dt

[ ] = [ ]

θ

ω

ω

−(b/mℓ

2

)ω− (g/ℓ) sin θ+ c/mℓ

2
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Hence, with ,  and , we have

with

x = (θ,

˙

θ) u = c y = θ

ẋ = f(x,u)

y = g(x,u)

f((θ,ω), c) = (ω, −(b/mℓ

2

)ω− (g/ℓ) sin θ+ c/mℓ

2

)

g((θ,ω), c) = θ.
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2. 🔓
Let  in . If , the state  is an
equilibrium if and only if , that is

which holds if and only if

θ

e

R c = c

e

x

e

:= (θ

e

, 0)

f((θ

e

, 0), c

e

) = 0

[ ] = [ ]

0

0 − (g/ℓ) sin θ

e

+ c

e

/mℓ

2

0

0

c

e

= mgℓ sin θ

e

.
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3. 🔓
We have

A =

∂f

∂x

(x

e

, c

e

) = [ ]

0 1

−(g/ℓ) cos θ

e

−(b/mℓ

2

)

B =

∂f

∂u

(x

e

,u

e

) = [ ]

0

1/mℓ

2

C =

∂g

∂x

e

(x

e

,u

e

) = [ ], D =

∂g

∂u

e

(x

e

,u

e

) = 0

1

0
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Thus,

and obviously, as far as the output goes,

d

dt

Δθ ≈ Δω

d

dt

Δω ≈ −(g/ℓ) cos(θ

e

)Δθ− (b/mℓ

2

)Δω+Δc/mℓ

2

Δθ ≈ Δθ.
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