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🐍 IMPORTS
from numpy import *

from numpy.linalg import *

from scipy.linalg import *

from matplotlib.pyplot import *

from mpl_toolkits.mplot3d import *

from scipy.integrate import solve_ivp
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🐍 STREAMPLOT HELPER
def Q(f, xs, ys):

    X, Y = meshgrid(xs, ys)

    v = vectorize

    fx = v(lambda x, y: f([x, y])[0])

    fy = v(lambda x, y: f([x, y])[1])

return X, Y, fx(X, Y), fy(X, Y)
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🧭 CONTEXT
1. System initially at rest. 

2. Black box. The system state  is unknown.

3. Input/Output (I/O). The input determines the
output:

x(0) = 0.

x(t)

u(t), t ≥ 0 → y(t), t ≥ 0.
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The  yieldsvariation of constants method

y(t) = ∫

t

0

Ce

A(t−τ)

Bu(τ) dτ +Du(t).
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🏷️ SIGNALS & CAUSALITY
A signal is a time-dependent function

It is causal if

x(t) ∈ R

n

, t ∈ R.

t < 0 ⇒ x(t) = 0.
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📝 CONVENTION
In the sequel, we will assume that time-dependent
functions defined only for non-negative times

are zero for negative times

With this convention, they become causal signals.

x(t), t ≥ 0

x(t) = 0, t < 0.
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🏷️ HEAVISIDE FUNCTION
The Heaviside function is the causal signal defined by

🏷️ Synonym: (unit) step signal.

e(t) =

∣
1 if  t ≥ 0,

0 if  t < 0.
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🏷️ IMPULSE RESPONSE
The system impulse response is defined by:

H(t) = (Ce

At

B) × e(t) +Dδ(t) ∈ R

p×m
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📝 NOTES
the formula is valid for general (MIMO) systems.

🏷️ MIMO = multiple-input & multiple-output.

 is the unit impulse signal, we’ll get back to it (in
the meantime, you may assume that ).
δ(t)

D = 0
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📝 SISO SYSTEMS
When  and  the system is SISO.

🏷️ SISO = single-input & single-output.

Then  is a  matrix.

We identify it with its unique coefficient :

u(t) ∈ R y(t) ∈ R

H(t) 1 × 1

h(t)

H(t) ∈ R

1×1

= [h(t)], h(t) ∈ R.
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💎 I/O BEHAVIOR
Let , ,  be causal signals such that:

Then

u(t) x(t) y(t)

, t ≥ 0  and  x(0) = 0.

∣
ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)

y(t) = (H ∗ u)(t) := ∫

+∞

−∞

H(t− τ)u(τ) dτ.
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🏷️ CONVOLUTION
The operation  is called a convolution.∗
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🔍 IMPULSE RESPONSE
Consider the SISO system

where .

∣
ẋ = ax + u

y = x

a ≠ 0
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We have

H(t) = (Ce

At

B) × e(t) +Dδ(t)

= [1]e

[a]t

[1]e(t) + [0]δ(t)

= [e(t)e

at

]
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When  for example,u(t) = e(t)

y(t) = ∫

+∞

−∞

e(t− τ)e

a(t−τ)

e(τ) dτ

= ∫

t

0

e

a(t−τ)

dτ

= ∫

t

0

e

aτ

dτ

=

1

a

(e

at

− 1)
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🧩 INTEGRATOR
Let

where ,  and .

∣
ẋ = u

y = x

u ∈ R x ∈ R y ∈ R
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1. 🧮
Compute the impulse response of the system.
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🔓 INTEGRATOR
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1. 🔓

H(t) = (Ce

At

B) × e(t) +Dδ(t)

= [1]e

[0]t

[1]e(t) + [0]δ(t)

= [e(t)]
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🧩 DOUBLE INTEGRATOR
Let

where ,  and .

∣
ẋ

1

= x

2

ẋ

2

= u

y = x

1

u ∈ R x = (x

1

,x

2

) ∈ R

2

y ∈ R
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1. 🧮
Compute the impulse response of the system.
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🔓 DOUBLE INTEGRATOR
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1. 🔓

H(t) = (C exp(At)B) × e(t) +Dδ(t)

= [ ] exp([ ]t) [ ]e(t) + [0]δ(t)

= [ ] [ ] [ ]e(t)

= [te(t)]

1 0

0 1

0 0

0

1

1 0

1 t

0 1

0

1
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🧩 GAIN
Let

where ,  and .

y = Ku

u ∈ R

m

y ∈ R

p

K ∈ R

p×m
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1. 🧮
Compute the impulse response of the system.

28



🔓 GAIN
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1. 🔓
The I/O behavior can be represented by 
and  (for example). Thus,

ẋ = 0x + 0u

y = 0 × x + Ku

H(t) = (C exp(At)B) × e(t) + Dδ(t)

= 0 + Kδ(t)

= Kδ(t)
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🧩 MIMO SYSTEM
Let

H(t) := [ ]e

t

e(t) e

−t

e(t)
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1. 🧮
Find a linear system with matrices , , ,  whose
impulse response is .

A B C D

H(t)
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2. 🧮
Is there another 4-uple of matrices , , ,  with
the same impulse response?

A B C D
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3. 🧮
Same question but with a matrix  of a different size?A

34



🔓 MIMO SYSTEM
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1. 🔓
Since

the following matrices work:

exp([ ]t) = [ ],

+1 0

0 −1

e

+t

0

0 e

−t

A = [ ], B = [ ], C = [ ], D = [ ].

+1 0

0 −1

1 0

0 1

1 1 0 0
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2. 🔓
Since

changing  and  to be

doesn’t change the impulse response.

H(t) = (C exp(At)B) × e(t) +Dδ(t)

= ((−C) exp(At)(−B)) × e(t) +Dδ(t)

B C

B = [ ], C = [ ],

−1 0

0 −1

−1 −1
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3. 🔓
We can also easily add a scalar dynamics (say )
that doesn’t influence the impulse response.

The following matrices also work

ẋ

3

= 0

A = , B = ,

⎡

⎢
⎣

+1 0 0

0 −1 0

0 0 0

⎤

⎥
⎦

⎡

⎢
⎣

1 0

0 1

0 0

⎤

⎥
⎦

C = [ ], D = [ ].1 1 0 0 0
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🏷️ LAPLACE TRANSFORM
Let ,  be a scalar signal.

It Laplace transform is the function of  given by:

x(t) t ∈ R

s

x(s) = ∫

+∞

−∞

x(t)e

−st

dt.
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DOMAIN & CODOMAIN
The Laplace transform of a signal is a complex-valued
function; its domain is a subset of the complex plane.

s ∈ D ⇒ x(s) ∈ C.
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If  is a causal signal of sub-exponential growth

(  and ), its Laplace transform is defined
on an open half-plane:

x(t)

|x(t)| ≤ ke

σt

e(t), t ∈ R,

k ≥ 0 σ ∈ R

R(s) > σ ⇒ x(s) ∈ C.
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⚠️ NOTATION
We use the same symbol (here “ ”) to denote:

a signal  and

its Laplace transform 

They are two equivalent representations of the same
“object”, but different mathematical “functions”.

If you fear some ambiguity, use named variables, e.g.:

x

x(t)

x(s)

x(t = 1)  or x(s = 1)  instead of x(1).
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VECTOR/MATRIX-VALUED
SIGNALS

The Laplace transform

of a vector-valued signal  or

of a matrix-valued signal 

are computed elementwise.

x(t) ∈ R

n

X(t) ∈ R

m×n
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x

i

(s) := ∫

+∞

−∞

x

i

(t)e

−st

dt.

X

ij

(s) := ∫

+∞

−∞

X

ij

(t)e

−st

dt.
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🏷️ RATIONAL SIGNALS
We will only deal with rational (and causal) signals:

where:

 is a finite subset of ,

for every ,  is a polynomial in .

x(t) = (∑

λ∈Λ

p

λ

(t)e

λt

)e(t)

Λ C

λ ∈ Λ p

λ

(t) t
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📝
They are called rational since

where  and  are polynomials; also

x(s) =

n(s)

d(s)

n(s) d(s)

degn(s) ≤ deg d(s).
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🔍 EXPONENTIAL
Let

for some . Then

x(t) = e

at

e(t), t ∈ R

a ∈ R

x(s) = ∫

+∞

−∞

e

at

e(t)e

−st

dt = ∫

+∞

0

e

(a−s)t

dt.
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If , then

the function  is integrable and

R(s) > a

e

(a−s)t

≤ e

−(R(s)−a)t

;

∣ ∣
t ∈ [0,+∞[ ↦ e

(a−s)t

x(s) = [

e

(a−s)t

a− s

]

+∞

0

=

1

s− a

.
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💻 SYMBOLIC COMPUTATION
import sympy

from sympy.abc import t, s

from sympy.integrals.transforms \

import laplace_transform    

def L(f):

return laplace_transform(f, t, s)[0]
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>>> from sympy.abc import a

>>> xt = sympy.exp(a*t)

>>> xs = L(xt)

>>> xs

1/(-a + s)
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🧩 RAMP
Let

x(t) = te(t), t ∈ R.
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1. 🧮
Compute analytically the Laplace Transform of .x(t)
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2. 💻
Compute symbolically the Laplace Transform of .x(t)
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🔓 RAMP
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1. 🔓

x(s) = ∫

+∞

−∞

te(t)e

−st

dt

= ∫

+∞

0

te

−st

dt.
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By integration by parts,

x(s) = [t

e

−st

−s

]

+∞

0

− ∫

+∞

0

e

−st

−s

dt

=

1

s

∫

+∞

0

e

−st

dt

=

1

s

[

e

−st

−s

]

+∞

0

=

1

s

2
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2. 🔓
With SymPy, we have accordingly:

>>> xt = t

>>> xs = L(xt)

>>> xs

s**(-2)
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🏷️ TRANSFER FUNCTION
Let  be the impulse response of a system.

Its Laplace transform  is the system transfer
function.

H(t)

H(s)
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💎
For LTI systems in standard form,

H(s) = C[sI −A]

−1

B+D.
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💎 OPERATIONAL CALCULUS
y(t) = (H ∗ u)(t) ⟺ y(s) = H(s) × u(s)
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GRAPHICAL LANGUAGE
Control engineers used block diagrams to describe
(combinations of) dynamical systems, with

“boxes” to determine the relation between input
signals and output signals and

“wires” to route output signals to inputs signals.
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FEEDBACK BLOCK-DIAGRAM
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Triangles denote gains (scalar or matrix
multipliers),

Adders sum (or substract) signals.
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LTI systems can be specified by:

(differential) equations,

the impulse response,

the transfer function.

64



EQUIVALENT SYSTEMS
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🧩 FEEDBACK BLOCK-DIAGRAM
Consider the system depicted in the 

 picture.
Feedback Block-

Diagram
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1. 🧮
Compute its transfer function.
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🔓 FEEDBACK BLOCK-DIAGRAM
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1. 🔓
The diagram logic translates into:

and thus

y(s) =

1

s

(u(s) − ky(s)),

(1 −

k

s

)y(s) =

1

s

u(s)
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or equivalently

Thus, the transfer function of this SISO system is

y(s) =

1

s− k

u(s).

h(s) =

1

s− k

.
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🤔 IMPULSE RESPONSE
Why refer to  as the system “impulse response”?

By the way, what’s an impulse?

h(t)
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IMPULSE APPROXIMATIONS
Pick a time constant  and defineε > 0

δ

ε

(t) :=

1

ε

e

−t/ε

e(t).
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🐍

def delta(t, eps):

return exp(-t / eps) / eps * (t >= 0)
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📈

figure()

t = linspace(-1, 4, 1000)

for eps in [1.0, 0.5, 0.25]:

    plot(t, delta(t, eps), 

         label=rf"$\varepsilon={eps}$")

xlabel("$t$"); title(r"$\delta_{\varepsilon}(t)$") 

legend()
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IN THE LAPLACE DOMAIN

(assuming that )

δ

ε

(s) = ∫

+∞

−∞

δ

ε

(t)e

−st

dt

=

1

ε

∫

+∞

0

e

−(s+1/ε)t

dt

=

1

ε

[

e

−(s+1/ε)t

−(s+ 1/ε)

]

+∞

0

=

1

1 + εs

R(s) > −1/ε
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The “limit” of the signal  when  is not
defined as a function (issue for ) but as a
generalized function , the unit impulse.

This technicality can be avoided in the Laplace
domain where

δ

ε

(t) ε → 0

t = 0

δ(t)

δ(s) = lim

ε→0

δ

ε

(s) = lim

ε→0

1

1 + εs

= 1.

77



Thus, if  and

1.  then

2. 

3. and thus .

Conclusion: the impulse response  is the output
of the system when the input is the unit impulse .

y(t) = (h ∗ u)(t)

u(t) = δ(t)

y(s) = h(s) × δ(s) = h(s) × 1 = h(s)

y(t) = h(t)

h(t)

δ(t)
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🏷️ I/O STABILITY
A system is I/O-stable if there is a  such that

🏷️ More precisely, BIBO-stability (“bounded input,
bounded output”).

K ≥ 0

∥u(t)∥ ≤ M, t ≥ 0

⇒

∥y(t)∥ ≤ KM, t ≥ 0.
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🏷️ TRANSFER FUNCTION POLES
A pole of the transfer function  is a  such
that for at least one element ,

H(s) s ∈ C

H

ij

(s)

|H

ij

(s)| = +∞.
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💎 I/O-STABILITY CRITERIA
A system is I/O-stable if and only if all its poles are in
the open left-plane, i.e. such that

R(s) < 0.

81



💎 INTERNAL STABILITY  I/O-
STABILITY

If the system  is asymptotically stable, then
for any matrices , ,  of compatible shapes,

is I/O-stable.

⇒

ẋ = Ax

B C D

ẋ = Ax + Bu

y = Cx + Du
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🔍 FULLY ACTUATED &
MEASURED SYSTEM

If ,  and , that is

then .

B = I C = I D = 0

ẋ = Ax+ u, y = x

H(s) = [sI −A]

−1
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Therefore,  is a pole of  iff it’s an eigenvalue of .

Thus, in this case, asymptotic stability and I/O-stability
are equivalent.

(This equivalence actually holds under much weaker
conditions.)

s H A
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