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🐍 IMPORTS
from numpy import *

from numpy.linalg import *

from numpy.testing import *

from scipy.integrate import *

from scipy.linalg import *

from matplotlib.pyplot import *
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🏷️ CONTROLLABILITY
The system  is controllable if

for any ,  and ,

there are  and  such that

the solution  such that  satisfies

ẋ = f(x,u)

t

0

∈ R x

0

∈ R

n

x

f

∈ R

n

t

f

> t

0

u : [t

0

, t

f

] → R

m

x(t) x(t

0

) = x

0

x(t

f

) = x

f

.

5



6



🏷️ ADMISSIBLE TRAJECTORY
Let  be a reference trajectory of the system state:

It is admissible if there is a function , 
such that the solution  of the IVP

is the function .
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ẋ = f(x,u

r

), x(t

0

) = x

r

(t

0

)

x

r

7



🔍 CAR
The position  (in meters) of a car of mass  (in kg) on
a straight road is governed by

where  the force (in Newtons) generated by its motor.

d m

m

¨

d = u

u
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The car is initially at the origin of a road and
motionless.

We would like to cross the end of the road (location
) at time  and speed .

Numerical values:

,

,  and .
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f

= 100 km/h
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STEP 1 – TRAJECTORY PLANNING
We search for a reference trajectory for the state

such that:

, ,

, .
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STEP 2 – ADMISSIBILITY
We check that this reference trajectory is admissible,
i.e. that we can find a control  such that the
solution of the IVP is  when

.
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ADMISSIBLE TRAJECTORY
Here, if  is smooth and if we apply the control

,

Thus,  – and thus  – for
every .
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REFERENCE TRAJECTORY
We can find  as a third-order polynomial in 

with

(equivalently, with  as an affine function of ).
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🐍 CONSTANTS

m = 1500.0

xf = 100.0

vf = 100.0 * 1000 / 3600 # m/s

tf = 10.0

alpha = vf/tf**2 - 2*xf/tf**3

beta = 3*xf/tf**2 - vf/tf
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🐍 STATE & INPUT EVOLUTION

def x(t):

return alpha * t**3 + beta * t**2

def d2_x(t):

return 6 * alpha * t + 2 * beta

def u(t):

return m * d2_x(t)
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🐍 💻 SIMULATION

y0 = [0.0, 0.0]

def fun(t, y):

    x, d_x = y

    d2_x = u(t) / m

return [d_x, d2_x]

result = solve_ivp(

  fun, [0.0, tf], y0, dense_output=True

)
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📊 GRAPH OF THE DISTANCE

figure()

t = linspace(0, tf, 1000)

xt = result["sol"](t)[0]

plot(t, xt)

grid(True); xlabel("$t$"); title("$d(t)$")
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📊 GRAPH OF THE VELOCITY

figure()

vt = result["sol"](t)[1]

plot(t, 3.6 * vt)

grid(True); xlabel("$t$")

title(r"$\dot{d}(t)$ km/h")

19



20



🧩 NON-ADMISSIBLE
TRAJECTORY

Let  with , ,ẋ = Ax + Bu x ∈ R

2

u ∈ R

A = [ ], B = [ ].

0 1

0 0

0

1
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1. 🧠
Find a smooth reference trajectory , 
which is not admissible.

x

r

(t) t ∈ [0, 1]
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🔓 NON-ADMISSIBLE
TRAJECTORY
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1. 🔓
The first line of the vector equation  is

Any trajectory  that does not satisfy this equation is
not admissible; for example

ẋ = Ax + Bu

ẋ

1

= x

2

.

x

r

x

r

(t) := [ ].

0

1
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🧩 PENDULUM
Consider the pendulum with dynamics:

mℓ

2

¨

θ+ b

˙

θ+mgℓ sin θ = u
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1. 🧠 🧮
Find a smooth reference trajectory that leads the
pendulum from the bottom configuration

to the top configuration

θ(0) = 0,

˙

θ(0) = 0

θ(t

f

) = π,

˙

θ(t

f

) = 0.
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2. 🧠 🧮
Show that the reference trajectory is admissible and
compute the corresponding input .u

r

(t)
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3. 💻 🧠
Simulate the result and visualize the solution.

What should theoretically happen at  if
 is applied when ? What does happen

in reality ? Why ? How can we mitigate this issue?

Numerical Values:

t = t

f

u(t) = 0 t ≥ t

f

m = 1.0, l = 1.0, b = 0.1, g = 9.81, t

f

= 10.
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🔓 PENDULUM
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1. 🔓
Since the initial and final conditions form a set of 4
equations, we search for an admissible trajectory
defined by a 3rd-order polynomial

with unknown coefficients .
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The initial conditions  and  are
equivalent to

θ

r

(0) = 0

˙

θ

r

(0) = 0

b = 0, c = 0.
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The final condition  is equivalent to

and  to

θ

r

(t

f
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The latter equation can be transformed into

and the former becomes

and thus 
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Finally, the following trajectory  is
smooth and meets the required initial and final
conditions:
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2. 🔓
By construction our reference trajectory meets the
initial condition. There is a unique input that makes
the solution follows this reference; its is defined by

where

u

r

(t) := mℓ
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3. 🔓

m = 1.0

l = 1.0

b = 0.1

g = 9.81

t0, tf = 0.0, 10.0
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def theta_r(t):

    s = t/tf

return -2*pi*s**3 + 3*pi*s**2

def dtheta_r(t):

    s = t/tf

return -6*pi/tf*s**2 + 6*pi/tf*s
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def d2theta_r(t):

    s = t/tf

return -12*pi/(tf*tf)*s + 6*pi/(tf*tf)

def u_r(t):

return (m*l*l*d2theta_r(t) +

            b*dtheta_r(t) +

            m*g*l*sin(theta_r(t)))
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def fun(t, theta_dtheta):

    theta, dtheta = theta_dtheta

    d2theta = ((-b*dtheta - m*g*l*sin(theta) + u_r(t)) 

/ (m * l * l))

return dtheta, d2theta

t_span = [t0, tf]

y0 = [0.0, 0.0]
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r = solve_ivp(fun, t_span, y0, dense_output=True)

t = linspace(t0, tf, 1000)

solt = r["sol"](t)

thetat, dthetat = solt
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figure()

plot(t, theta_r(t), "k--", label=r"$\theta_r(t)$")

plot(t, thetat, label=r"$\theta(t)$")

yticks([0, 0.5*pi, pi], ["$0$", r"$\pi/2$", r"$\pi$"])

title(r"Simulation of $\theta(t)$")

grid(True); legend()
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Theoretically, we should have  and
, but the simulation is quite far from that.

Since the top equilibrium is unstable, small
(numerical) errors in the state may cause large
deviations of the trajectory.

We may reduce the simulation error thresholds to
alleviate this problem.

θ(t

f

) = π

˙

θ(t

f

) = 0
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rhp = solve_ivp(fun, t_span, y0, 

                dense_output=True, 

                rtol=1e-6, atol=1e-9)

t = linspace(t0, tf, 1000)

solt_hp = rhp["sol"](t)

thetat_hp, dthetat_hp = solt_hp
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figure()

plot(t, theta_r(t), "k--", label=r"$\theta_r(t)$")

plot(t, thetat, label=r"$\theta(t)$  (standard)")

plot(t, thetat_hp, label=r"$\theta(t)$ (low error)")

yticks([0, 0.5*pi, pi], ["$0$", r"$\pi/2$", r"$\pi$"])

title(r"Simulation of $\theta(t)$")

grid(True); legend()
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💎 CONTROLLABILITY OF LTI
SYSTEMS

A system  is controllable iff

from the origin  at ,

we can reach any state .

ẋ = Ax + Bu

x

0

= 0 t

0

= 0

x

f

∈ R

n
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🏷️ 💎 KALMAN CRITERION
The system  ( ) is controllable
iff:

 is the controllability matrix.

ẋ = Ax + Bu x ∈ R

n

rank [B,AB,… ,A

n−1

B] = n

[B,… ,A

n−1

B]
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🔍 CONTROLLABILITY MATRIX

A = , B =

⎡

⎢
⎣

0 1 0

0 0 1

0 0 0

⎤

⎥
⎦

⎡

⎢
⎣

0

0

1

⎤

⎥
⎦
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🐍 COMPUTATION

def KCM(A, B):

    n = shape(A)[0]

    mp = matrix_power

    cs = column_stack

return cs([mp(A, k) @ B for k in range(n)])
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🐍 LTI SYSTEM

n = 3

A = zeros((n, n))

for i in range(0, n-1):

    A[i,i+1] = 1.0

B = zeros((n, 1))

B[n-1, 0] = 1.0
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🐍 RANK CONDITION

C = KCM(A, B)

C_expected = [[0, 0, 1], [0, 1, 0], [1, 0, 0]]

assert_almost_equal(C, C_expected)

assert matrix_rank(C) == n
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⚠️ WARNINGS
This implementation of KCM is not optimized: fewer
computations are achievable using the identity:

Rank computations are subject to (catastrophic)
numerical errors; sensitivity analysis or symbolic
computations may alleviate the problem.

A

n

B = A × (A

n−1

B).
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🧩 FULLY ACTUATED SYSTEM
Consider  with

,

 and,

.

ẋ = Ax + Bu

x ∈ R

n

u ∈ R

m

rankB = n
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1. 🧠
Show that .m ≥ n
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2. 🧮
Is the system controllable ?
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3. 🧠 🧮
Given ,  and , show that any smooth
trajectory that leads from  at time  to  at time

 is admissible.
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🔓 FULLY ACTUATED SYSTEM
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1. 🔓
The shape of  is , thus

By assumption , thus .

B n×m

rankB ≤ min(n,m).

rankB = n n ≤ m
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2. 🔓
The system is controllable since

rank [B,AB,…] ≤ rankB = n.
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3. 🔓
Since , matrix  contains a 
invertible matrix . Let’s assume for the sake of
simplicity that  is made of the first  columns of 
and let

Then by construction .

rankB = n B n × n

R

R n B

S := [ ] ∈ R

m×n

.

R

−1

0

B × S = I ∈ R

n×n
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If we define  as a function of some auxiliary control
 by

then

u

v ∈ R

n

u(t) = Sv(t),

ẋ = Ax + v.
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To join  at  and  at , we can apply the control

where

x
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f

t
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r

(t)

x

r

(t) := x

0

+

t − t

0

t

f

− t

0

(x

f

− x

0

).

63



Indeed, that leads to

or if we denote ,

and thus yields  for any .

ẋ(t) = Ax(t) −Ax

r

(t) + ẋ

r

(t), x(t

0

) = x

r

(t

0

)

e := x− x

r

ė(t) = Ae(t), e(t

0

) = 0

x(t) = x

r

(t) t ≥ t

0
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🧩 INTEGRATOR CHAIN

ẋ

n

= u, ẋ

n−1

= x

n

, ⋯ , ẋ

1

= x

2

.
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1. 🧠 🧮
Show that the system is controllable
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🔓 INTEGRATOR CHAIN
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1. 🔓
We have

A = , B =

⎡

⎢
⎣

0 1 0 ⋯ 0

0 0 1 ⋯ 0

0 0 ⋯ ⋱ ⋮

⋮ ⋮ ⋮ ⋮ 1

0 0 0 0 0

⎤

⎥
⎦

⎡

⎢
⎣

0

0

⋮

0

1

⎤

⎥
⎦
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Thus,

B = , AB = , …, A

n−1

B = .

⎡

⎢
⎣

0

0

⋮

0

1

⎤

⎥
⎦

⎡

⎢
⎣

0

0

⋮

1

0

⎤

⎥
⎦

⎡

⎢
⎣

1

0

⋮

0

0

⎤

⎥
⎦
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The controllability matrix has full rank and the system
is controllable.
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🧩 HEAT EQUATION
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dT

1

/dt = u+ (T

2

− T

1

)

dT

2

/dt = (T
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− T
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) + (T
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− T
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3

) + (T

4

− T

3
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dT
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/dt = (T

3

− T

4
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1. 🧠 🧮
Show that the system is controllable.
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2. 🧠 🧮
Assume now that the four cells are organized as a
square.

Is the system still controllable?

Why?

How could you solve this problem?
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🔓 HEAT EQUATION
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1. 🔓
We have

A = , B = .

⎡

⎢
⎣

−1 1 0 0

1 −2 1 0

0 1 −2 1

0 0 1 −1

⎤

⎥
⎦

⎡

⎢
⎣

1

0

0

0

⎤

⎥
⎦
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AB = , A

2

B = , A

3

B = .

⎡

⎢
⎣

−1

1

0

0

⎤

⎥
⎦

⎡

⎢
⎣

2

−3

1

0

⎤

⎥
⎦

⎡

⎢
⎣

−5

9

−5

1

⎤

⎥
⎦
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The controllability matrix

is full rank, thus the system is controllable.

⎡

⎢
⎣

1 −1 2 −5

0 1 −3 9

0 0 1 −5

0 0 0 1

⎤

⎥
⎦
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2. 🔓
If the system is organized as a square

A = , B = .

⎡

⎢
⎣

−2 1 1 0

1 −2 0 1

1 0 −2 1

0 1 1 −2

⎤

⎥
⎦

⎡

⎢
⎣

1

0

0

0

⎤

⎥
⎦
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The controllability matrix is

It is not full rank since the second and the third rows
are equal. Thus the system is not controllable.

⎡

⎢
⎣

1 −2 6 −20

0 1 −4 16

0 1 −4 16

0 0 2 −12

⎤

⎥
⎦
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The lack of controllability is due to symmetry.

If the initial temperature in cell 2 and 3 are equal, since
they play symmetric role in the system, their
temperature will be equal for any subsequent time.

Hence, it will be impossible to reach a state with
different temperature in cell 2 and 3, no matter what
the input is.
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To break this symmetry and restore controllability, we
may for example try to add a second independent heat
source sink in cell 2.

This leads to

A = , B = .

⎡

⎢
⎣

−2 1 1 0

1 −2 0 1

1 0 −2 1

0 1 1 −2

⎤

⎥
⎦

⎡

⎢
⎣

1 0

0 1

0 0

0 0

⎤

⎥
⎦
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and the controllability matrix

which has a full-rank.

⎡

⎢
⎣

1 0 −2 1 6 −4 −20 16

0 1 1 −2 −4 6 16 −20

0 0 1 0 −4 2 16 −12

0 0 0 1 2 −4 −12 16

⎤

⎥
⎦
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