
CONTROLLABILITY
👤 Sébastien Boisgérault

1

file:///home/runner/work/control-engineering-with-python/control-engineering-with-python/sebastien.boisgerault@minesparis.psl.eu

CONTROL ENGINEERING WITH PYTHON

📖

©️

🏦

Documents (GitHub)

License CC BY 4.0

Mines ParisTech, PSL University

2

https://github.com/boisgera/control-engineering-with-python
https://creativecommons.org/licenses/by/4.0/
https://mines-paristech.eu/

SYMBOLS
🐍 Code 🔍 Worked Example

📈 Graph 🧩 Exercise

🏷️ Definition 💻 Numerical Method

💎 Theorem 🧮 Analytical Method

📝 Remark 🧠 Theory

ℹ️ Information 🗝️ Hint

⚠️ Warning 🔓 Solution

3

🐍 IMPORTS
from numpy import *

from numpy.linalg import *

from numpy.testing import *

from scipy.integrate import *

from scipy.linalg import *

from matplotlib.pyplot import *

4

🏷️ CONTROLLABILITY
The system is controllable if

for any , and ,

there are and such that

the solution such that satisfies

ẋ = f(x,u)

t

0

∈ R x

0

∈ R

n

x

f

∈ R

n

t

f

> t

0

u : [t

0

, t

f

] → R

m

x(t) x(t

0

) = x

0

x(t

f

) = x

f

.

5

6

🏷️ ADMISSIBLE TRAJECTORY
Let be a reference trajectory of the system state:

It is admissible if there is a function ,
such that the solution of the IVP

is the function .

x

r

x

r

(t), t ∈ [t

0

, t

f

].

u

r

(t) t ∈ [t

0

, t

f

]

x

ẋ = f(x,u

r

), x(t

0

) = x

r

(t

0

)

x

r

7

🔍 CAR
The position (in meters) of a car of mass (in kg) on
a straight road is governed by

where the force (in Newtons) generated by its motor.

d m

m

¨

d = u

u

8

The car is initially at the origin of a road and
motionless.

We would like to cross the end of the road (location
) at time and speed .

Numerical values:

,

, and .

d

f

> 0 t

f

> 0 v

f

m = 1500 kg

t

f

= 10 s d

f

= 100m v

f

= 100 km/h

9

STEP 1 – TRAJECTORY PLANNING
We search for a reference trajectory for the state

such that:

, ,

, .

x

r

(t) = (d

r

(t),

˙

d

r

(t))

d

r

(0) = 0

˙

d

r

(0) = 0

d

r

(t

f

) = x

f

˙

d

r

(t

f

) = v

f

10

STEP 2 – ADMISSIBILITY
We check that this reference trajectory is admissible,
i.e. that we can find a control such that the
solution of the IVP is when

.

u

r

(t)

x(t) = x

r

(t)

x(0) = x

r

(t)

11

ADMISSIBLE TRAJECTORY
Here, if is smooth and if we apply the control

,

Thus, – and thus – for
every .

d

r

u(t) = m

¨

d

r

(t)

m

d

2

dt

2

(d− d

r

) = 0,

(d− d

r

)(0) = 0,

d

dt

(d− d

r

)(0) = 0.

d(t) = d

r

(t)

˙

d(t) =

˙

d

r

(t)

t ≥ 0

12

REFERENCE TRAJECTORY
We can find as a third-order polynomial in

with

(equivalently, with as an affine function of).

d

r

t

d

r

(t) = αt

3

+ βt

2

+ γt+ δ

α =

v

f

t

2

f

− 2

d

f

t

3

f

, β = 3

d

f

t

2

f

−

v

f

tf

, γ = 0, δ = 0.

u(t) t

13

🐍 CONSTANTS

m = 1500.0

xf = 100.0

vf = 100.0 * 1000 / 3600 # m/s

tf = 10.0

alpha = vf/tf**2 - 2*xf/tf**3

beta = 3*xf/tf**2 - vf/tf

14

🐍 STATE & INPUT EVOLUTION

def x(t):

return alpha * t**3 + beta * t**2

def d2_x(t):

return 6 * alpha * t + 2 * beta

def u(t):

return m * d2_x(t)

15

🐍 💻 SIMULATION

y0 = [0.0, 0.0]

def fun(t, y):

 x, d_x = y

 d2_x = u(t) / m

return [d_x, d2_x]

result = solve_ivp(

 fun, [0.0, tf], y0, dense_output=True

)

16

📊 GRAPH OF THE DISTANCE

figure()

t = linspace(0, tf, 1000)

xt = result["sol"](t)[0]

plot(t, xt)

grid(True); xlabel("t"); title("$d(t)$")

17

18

📊 GRAPH OF THE VELOCITY

figure()

vt = result["sol"](t)[1]

plot(t, 3.6 * vt)

grid(True); xlabel("t")

title(r"$\dot{d}(t)$ km/h")

19

20

🧩 NON-ADMISSIBLE
TRAJECTORY

Let with , ,ẋ = Ax + Bu x ∈ R

2

u ∈ R

A = [], B = [].

0 1

0 0

0

1

21

1. 🧠
Find a smooth reference trajectory ,
which is not admissible.

x

r

(t) t ∈ [0, 1]

22

🔓 NON-ADMISSIBLE
TRAJECTORY

23

1. 🔓
The first line of the vector equation is

Any trajectory that does not satisfy this equation is
not admissible; for example

ẋ = Ax + Bu

ẋ

1

= x

2

.

x

r

x

r

(t) := [].

0

1

24

🧩 PENDULUM
Consider the pendulum with dynamics:

mℓ

2

¨

θ+ b

˙

θ+mgℓ sin θ = u

25

1. 🧠 🧮
Find a smooth reference trajectory that leads the
pendulum from the bottom configuration

to the top configuration

θ(0) = 0,

˙

θ(0) = 0

θ(t

f

) = π,

˙

θ(t

f

) = 0.

26

2. 🧠 🧮
Show that the reference trajectory is admissible and
compute the corresponding input .u

r

(t)

27

3. 💻 🧠
Simulate the result and visualize the solution.

What should theoretically happen at if
 is applied when ? What does happen

in reality ? Why ? How can we mitigate this issue?

Numerical Values:

t = t

f

u(t) = 0 t ≥ t

f

m = 1.0, l = 1.0, b = 0.1, g = 9.81, t

f

= 10.

28

🔓 PENDULUM

29

1. 🔓
Since the initial and final conditions form a set of 4
equations, we search for an admissible trajectory
defined by a 3rd-order polynomial

with unknown coefficients .

θ

r

(t) := at

3

f

+ bt

2

f

+ ct

f

+ d

a, b, c, d

30

The initial conditions and are
equivalent to

θ

r

(0) = 0

˙

θ

r

(0) = 0

b = 0, c = 0.

31

The final condition is equivalent to

and to

θ

r

(t

f

) = π

at

3

f

+ bt

2

f

= π

˙

θ

r

(t

f

) = 0

3at

2

f

+ 2bt

f

= 0.

32

The latter equation can be transformed into

and the former becomes

and thus

b = −

3

2

at

f

at

3

f

−

3

2

at

3

f

= π ⇔ a = −

2π

t

3

f

b =

3π

t

2

f

.

33

Finally, the following trajectory is
smooth and meets the required initial and final
conditions:

(θ

r

(t),

˙

θ

t

(t))

θ

r

(t) = −2π(

t

t

f

)

3

+ 3π(

t

t

f

)

2

˙

θ

r

(t) = −

6π

t

f

(

t

t

f

)

2

+

6π

t

f

(

t

t

f

)

34

2. 🔓
By construction our reference trajectory meets the
initial condition. There is a unique input that makes
the solution follows this reference; its is defined by

where

u

r

(t) := mℓ

2

¨

θ

r

(t) + b

˙

θ

r

(t) +mgℓ sin θ

r

(t)

¨

θ

r

(t) = −

12π

t

2

f

(

t

t

f

) +

6π

t

2

f

.

35

3. 🔓

m = 1.0

l = 1.0

b = 0.1

g = 9.81

t0, tf = 0.0, 10.0

36

def theta_r(t):

 s = t/tf

return -2*pi*s**3 + 3*pi*s**2

def dtheta_r(t):

 s = t/tf

return -6*pi/tf*s**2 + 6*pi/tf*s

37

def d2theta_r(t):

 s = t/tf

return -12*pi/(tf*tf)*s + 6*pi/(tf*tf)

def u_r(t):

return (m*l*l*d2theta_r(t) +

 b*dtheta_r(t) +

 m*g*l*sin(theta_r(t)))

38

def fun(t, theta_dtheta):

 theta, dtheta = theta_dtheta

 d2theta = ((-b*dtheta - m*g*l*sin(theta) + u_r(t))

/ (m * l * l))

return dtheta, d2theta

t_span = [t0, tf]

y0 = [0.0, 0.0]

39

r = solve_ivp(fun, t_span, y0, dense_output=True)

t = linspace(t0, tf, 1000)

solt = r["sol"](t)

thetat, dthetat = solt

40

figure()

plot(t, theta_r(t), "k--", label=r"$\theta_r(t)$")

plot(t, thetat, label=r"$\theta(t)$")

yticks([0, 0.5*pi, pi], ["0", r"$\pi/2$", r"π"])

title(r"Simulation of $\theta(t)$")

grid(True); legend()

41

42

Theoretically, we should have and
, but the simulation is quite far from that.

Since the top equilibrium is unstable, small
(numerical) errors in the state may cause large
deviations of the trajectory.

We may reduce the simulation error thresholds to
alleviate this problem.

θ(t

f

) = π

˙

θ(t

f

) = 0

43

rhp = solve_ivp(fun, t_span, y0,

 dense_output=True,

 rtol=1e-6, atol=1e-9)

t = linspace(t0, tf, 1000)

solt_hp = rhp["sol"](t)

thetat_hp, dthetat_hp = solt_hp

44

figure()

plot(t, theta_r(t), "k--", label=r"$\theta_r(t)$")

plot(t, thetat, label=r"$\theta(t)$ (standard)")

plot(t, thetat_hp, label=r"$\theta(t)$ (low error)")

yticks([0, 0.5*pi, pi], ["0", r"$\pi/2$", r"π"])

title(r"Simulation of $\theta(t)$")

grid(True); legend()

45

46

💎 CONTROLLABILITY OF LTI
SYSTEMS

A system is controllable iff

from the origin at ,

we can reach any state .

ẋ = Ax + Bu

x

0

= 0 t

0

= 0

x

f

∈ R

n

47

🏷️ 💎 KALMAN CRITERION
The system () is controllable
iff:

 is the controllability matrix.

ẋ = Ax + Bu x ∈ R

n

rank [B,AB,… ,A

n−1

B] = n

[B,… ,A

n−1

B]

48

🔍 CONTROLLABILITY MATRIX

A = , B =

⎡

⎢
⎣

0 1 0

0 0 1

0 0 0

⎤

⎥
⎦

⎡

⎢
⎣

0

0

1

⎤

⎥
⎦

49

🐍 COMPUTATION

def KCM(A, B):

 n = shape(A)[0]

 mp = matrix_power

 cs = column_stack

return cs([mp(A, k) @ B for k in range(n)])

50

🐍 LTI SYSTEM

n = 3

A = zeros((n, n))

for i in range(0, n-1):

 A[i,i+1] = 1.0

B = zeros((n, 1))

B[n-1, 0] = 1.0

51

🐍 RANK CONDITION

C = KCM(A, B)

C_expected = [[0, 0, 1], [0, 1, 0], [1, 0, 0]]

assert_almost_equal(C, C_expected)

assert matrix_rank(C) == n

52

⚠️ WARNINGS
This implementation of KCM is not optimized: fewer
computations are achievable using the identity:

Rank computations are subject to (catastrophic)
numerical errors; sensitivity analysis or symbolic
computations may alleviate the problem.

A

n

B = A × (A

n−1

B).

53

🧩 FULLY ACTUATED SYSTEM
Consider with

,

 and,

.

ẋ = Ax + Bu

x ∈ R

n

u ∈ R

m

rankB = n

54

1. 🧠
Show that .m ≥ n

55

2. 🧮
Is the system controllable ?

56

3. 🧠 🧮
Given , and , show that any smooth
trajectory that leads from at time to at time

 is admissible.

x

0

x

f

t

f

> 0

x

0

t

0

x

f

t

f

57

🔓 FULLY ACTUATED SYSTEM

58

1. 🔓
The shape of is , thus

By assumption , thus .

B n×m

rankB ≤ min(n,m).

rankB = n n ≤ m

59

2. 🔓
The system is controllable since

rank [B,AB,…] ≤ rankB = n.

60

3. 🔓
Since , matrix contains a
invertible matrix . Let’s assume for the sake of
simplicity that is made of the first columns of
and let

Then by construction .

rankB = n B n × n

R

R n B

S := [] ∈ R

m×n

.

R

−1

0

B × S = I ∈ R

n×n

61

If we define as a function of some auxiliary control
 by

then

u

v ∈ R

n

u(t) = Sv(t),

ẋ = Ax + v.

62

To join at and at , we can apply the control

where

x

0

t

0

x

f

t

f

v(t) := −Ax

r

(t) + ẋ

r

(t)

x

r

(t) := x

0

+

t − t

0

t

f

− t

0

(x

f

− x

0

).

63

Indeed, that leads to

or if we denote ,

and thus yields for any .

ẋ(t) = Ax(t) −Ax

r

(t) + ẋ

r

(t), x(t

0

) = x

r

(t

0

)

e := x− x

r

ė(t) = Ae(t), e(t

0

) = 0

x(t) = x

r

(t) t ≥ t

0

64

🧩 INTEGRATOR CHAIN

ẋ

n

= u, ẋ

n−1

= x

n

, ⋯ , ẋ

1

= x

2

.

65

1. 🧠 🧮
Show that the system is controllable

66

🔓 INTEGRATOR CHAIN

67

1. 🔓
We have

A = , B =

⎡

⎢
⎣

0 1 0 ⋯ 0

0 0 1 ⋯ 0

0 0 ⋯ ⋱ ⋮

⋮ ⋮ ⋮ ⋮ 1

0 0 0 0 0

⎤

⎥
⎦

⎡

⎢
⎣

0

0

⋮

0

1

⎤

⎥
⎦

68

Thus,

B = , AB = , …, A

n−1

B = .

⎡

⎢
⎣

0

0

⋮

0

1

⎤

⎥
⎦

⎡

⎢
⎣

0

0

⋮

1

0

⎤

⎥
⎦

⎡

⎢
⎣

1

0

⋮

0

0

⎤

⎥
⎦

69

The controllability matrix has full rank and the system
is controllable.

70

🧩 HEAT EQUATION

71

dT

1

/dt = u+ (T

2

− T

1

)

dT

2

/dt = (T

1

− T

2

) + (T

3

− T

2

)

dT

3

/dt = (T

2

− T

3

) + (T

4

− T

3

)

dT

4

/dt = (T

3

− T

4

)

72

1. 🧠 🧮
Show that the system is controllable.

73

2. 🧠 🧮
Assume now that the four cells are organized as a
square.

Is the system still controllable?

Why?

How could you solve this problem?

74

🔓 HEAT EQUATION

75

1. 🔓
We have

A = , B = .

⎡

⎢
⎣

−1 1 0 0

1 −2 1 0

0 1 −2 1

0 0 1 −1

⎤

⎥
⎦

⎡

⎢
⎣

1

0

0

0

⎤

⎥
⎦

76

AB = , A

2

B = , A

3

B = .

⎡

⎢
⎣

−1

1

0

0

⎤

⎥
⎦

⎡

⎢
⎣

2

−3

1

0

⎤

⎥
⎦

⎡

⎢
⎣

−5

9

−5

1

⎤

⎥
⎦

77

The controllability matrix

is full rank, thus the system is controllable.

⎡

⎢
⎣

1 −1 2 −5

0 1 −3 9

0 0 1 −5

0 0 0 1

⎤

⎥
⎦

78

2. 🔓
If the system is organized as a square

A = , B = .

⎡

⎢
⎣

−2 1 1 0

1 −2 0 1

1 0 −2 1

0 1 1 −2

⎤

⎥
⎦

⎡

⎢
⎣

1

0

0

0

⎤

⎥
⎦

79

The controllability matrix is

It is not full rank since the second and the third rows
are equal. Thus the system is not controllable.

⎡

⎢
⎣

1 −2 6 −20

0 1 −4 16

0 1 −4 16

0 0 2 −12

⎤

⎥
⎦

80

The lack of controllability is due to symmetry.

If the initial temperature in cell 2 and 3 are equal, since
they play symmetric role in the system, their
temperature will be equal for any subsequent time.

Hence, it will be impossible to reach a state with
different temperature in cell 2 and 3, no matter what
the input is.

81

To break this symmetry and restore controllability, we
may for example try to add a second independent heat
source sink in cell 2.

This leads to

A = , B = .

⎡

⎢
⎣

−2 1 1 0

1 −2 0 1

1 0 −2 1

0 1 1 −2

⎤

⎥
⎦

⎡

⎢
⎣

1 0

0 1

0 0

0 0

⎤

⎥
⎦

82

and the controllability matrix

which has a full-rank.

⎡

⎢
⎣

1 0 −2 1 6 −4 −20 16

0 1 1 −2 −4 6 16 −20

0 0 1 0 −4 2 16 −12

0 0 0 1 2 −4 −12 16

⎤

⎥
⎦

83

