
OBSERVERS
👤 Sébastien Boisgérault

1

file:///home/runner/work/control-engineering-with-python/control-engineering-with-python/sebastien.boisgerault@minesparis.psl.eu

CONTROL ENGINEERING WITH PYTHON

📖

©️

🏦

Documents (GitHub)

License CC BY 4.0

Mines ParisTech, PSL University

2

https://github.com/boisgera/control-engineering-with-python
https://creativecommons.org/licenses/by/4.0/
https://mines-paristech.eu/

SYMBOLS
🐍 Code 🔍 Worked Example

📈 Graph 🧩 Exercise

🏷️ Definition 💻 Numerical Method

💎 Theorem 🧮 Analytical Method

📝 Remark 🧠 Theory

ℹ️ Information 🗝️ Hint

⚠️ Warning 🔓 Solution

3

🐍 IMPORTS
from numpy import *

from numpy.linalg import *

from scipy.integrate import solve_ivp

from scipy.linalg import solve_continuous_are

from matplotlib.pyplot import *

from numpy.testing import *

4

🐍 STREAM PLOT HELPER
def Q(f, xs, ys):

 X, Y = meshgrid(xs, ys)

 fx = vectorize(lambda x, y: f([x, y])[0])

 fy = vectorize(lambda x, y: f([x, y])[1])

return X, Y, fx(X, Y), fy(X, Y)

5

🧭 OBSERVABILITY

6

MOTIVATION
Controling a system generally requires the knowledge
of the state , but measuring every state variable
may be impossible (or too expensive).

Can we reduce the amount of physical sensors and still
be able to compute the state with “virtual” or
“software” sensors ?

x(t)

7

🏷️ OBSERVERS
Control engineers call these software devices
observers.

First we adress their mathematical feasibility.

8

🏷️ OBSERVABILITY
The system

is observable if the knowledge of on
some finite time span determines uniquely the
initial condition .

∣
ẋ = f(x)

y = g(x)

y(t) = g(x(t))

[0, τ]

x(0)

9

📝 REMARKS
The knowledge of determines uniquely
via the system dynamics.

Later, observers will provide merely asymptotically
exact estimates of , that satisfy

 when

x(0) x(t)

x̂(t) x(t)

x̂(t) − x(t) → 0 t → +∞.

10

EXTENSION
The definition of observability may be extended to
systems with (known) inputs :

In general, the input may then be selected
specifically to generate the appropriate that
allows us to compute .

u

∣
ẋ = f(x,u)

y = g(x,u)

u

y(t)

x(0)

11

But for linear systems, the choice of is irrelevant.

Indeed, if

and we can deduce from when :

u

∣
ẋ = Ax+Bu

y = Cx+Du

x(0) y(t) u = 0

y

0

(t) = Ce

At

x(0) → x(0)

12

then in the general case, when we measure

we can compute

and deduce at this stage.

y

u

(t) = Ce

At

x(0) + (H ∗ u)(t)

y

0

(t) = y

u

(t) − (H ∗ u)(t)

x(0)

13

🔍 OBSERVABILITY / CAR
The position (in meters) of a car of mass (in kg) on
a straight road is governed by

where the force (in Newtons) generated by its motor.

x m

mẍ = u

u

14

we don’t know where the car is at ,

we don’t know what its initial speed is,

we do know that the car doesn’t accelerate ().

t = 0

u = 0

15

If we measure the position :

 is known,

 is also computable.

Thus the system is observable.

y(t) = x(t)

x(0) = y(0)

ẋ(0) = ẏ(0)

16

🤔 WHAT IF?
What if we measure the speed instead of the location ?

y(t) = ẋ(t)

17

The system dynamics yields
 thus

and any is consistent with a measure of a
constant speed.

We can’t deduce the position of the car from the
measure of its speed; the system is not observable.

mẍ(t) = u(t) = 0

x(t) = x(0) + ẋ(0)t

ẋ(t) = ẋ(0)

x(0)

18

💎 KALMAN CRITERION
The system is observable iff:

 is the Kalman observability matrix.

ẋ = Ax, y = Cx

rank = n

⎡

⎢
⎣

C

CA

⋮

CA

n−1

⎤

⎥
⎦

[C;… ;CA

n−1

]

19

🏷️ NOTATION
“ ” row concatenation of matrices.

“ ” column concatenation of matrices.

We have

,

;

[C;⋯ ;CA

n−1

]

t

= [C

t

,⋯ , (A

t

)

n−1

C

t

].

20

💎 DUALITY
The system is observable

The system is controllable.

ẋ = Ax, y = Cx

⟺

ẋ = A

t

x+ C

t

u

21

🧩 FULLY MEASURED SYSTEM
Consider

with , and .

ẋ = Ax, y = Cx

x ∈ R

n

y ∈ R

p

rankC = n

22

1. 🧠 🧮
Is the system observable ?

23

🔓 FULLY MEASURED SYSTEM

24

1. 🔓
Yes! The rank of its observability matrix

is at most and at least the rank of , which is also .
Thus by the , the system is
observable.

⎡

⎢
⎣

C

CA

⋮

CA

n−1

⎤

⎥
⎦

n C n

💎 Kalman Criterion

25

🧩 INTEGRATOR CHAIN

ẋ

n

= 0, ẋ

n−1

= x

n

, ⋯ , ẋ

1

= x

2

, y = x

1

26

1. 🧠 🧮
Show that the system is observable.

27

🔓 INTEGRATOR CHAIN

28

1. 🔓
The standard form of the dynamics associated to the
state is characterized byx = (x

1

,… ,x

n

)

A = , C = [1, 0, 0,… , 0]

⎡

⎢
⎣

0 1 0 ⋯ 0

0 0 1 ⋱ ⋮

⋮ ⋱ ⋱ ⋱ 0

⋮ ⋱ ⋱ 0 1

0 ⋯ ⋯ 0 0

⎤

⎥
⎦

29

Thus,

The observability matrix has rank and hence the
system of observable.

C = [1, 0, 0,… , 0]

CA = [0, 1, 0,… , 0]

⋮ = ⋮

CA

n−1

= [0, 0, 0,… , 1]

n

30

🧩 HEAT EQUATION

31

dT

1

/dt = 0 + (T

2

− T

1

)

dT

2

/dt = (T

1

− T

2

) + (T

3

− T

2

)

dT

3

/dt = (T

2

− T

3

) + (T

4

− T

3

)

dT

4

/dt = (T

3

− T

4

)

y = T

4

32

1. 🧠 🧮
Show that the system is observable.

33

2. 🧮

Is it still true if the four cells are organized as a square
and the temperature sensor is in any of the corners ?

34

3. 🧠 🧮
Can you make the system observable with two
(adequatly located) sensors?

35

🔓 HEAT EQUATION

36

1. 🔓
The standard form of the dynamics associated to the
state is characterized byT = (T

1

,T

2

,T

3

,T4)

A = , C = [0, 0, 0, 1]

⎡

⎢
⎣

−1 1 0 0

1 −2 1 0

0 1 −2 1

0 0 1 −1

⎤

⎥
⎦

37

Therefore the observability matrix is

whose rank is 4: the system is observable.

⎡

⎢
⎣

0 0 0 1

0 0 1 −1

0 1 −3 2

1 −5 9 5

⎤

⎥
⎦

38

2. 🔓
In the square configuration, there is no way to get
observability with a single thermometer.

39

Indeed the new matrix would be

and the new matrix one of

A

A =

⎡

⎢
⎣

−2 1 1 0

1 −2 0 1

−1 0 −2 1

0 1 1 −2

⎤

⎥
⎦

C

[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]

40

The corresponding observability matrices are

, ,

⎡

⎢
⎣

1 0 0 0

−2 1 1 0

4 −4 −4 2

4 −4 −4 2

⎤

⎥
⎦

⎡

⎢
⎣

0 1 0 0

1 −2 0 1

−4 6 2 −4

−4 6 2 −4

⎤

⎥
⎦

,

⎡

⎢
⎣

0 0 1 0

−1 0 −2 1

4 0 4 −4

4 0 4 −4

⎤

⎥
⎦

⎡

⎢
⎣

0 0 0 1

0 1 1 −2

0 −4 −4 6

0 −4 −4 6

⎤

⎥
⎦

41

All the possible observability matrices in this case have
rank 2 or 3 < 4.

42

3. 🔓
With 2 sensors, “it depends” (on the location of the
sensors). For example:

43

The first case corresponds to

the second one to

C = []

1 0 0 0

0 0 0 1

C = []

0 1 0 0

0 0 0 1

44

The observability matrices are

The first has rank 3 the second rank 4

,

⎡

⎢
⎣

1 0 0 0

0 0 0 1

−2 1 1 0

0 1 1 −2

4 −4 −4 2

0 −4 −4 6

4 −4 −4 2

0 −4 −4 6

⎤

⎥
⎦

⎡

⎢
⎣

0 1 0 0

0 0 0 1

−1 −2 0 1

0 1 1 −2

−4 6 2 −4

0 −4 −4 6

−4 6 2 −4

0 −4 −4 6

⎤

⎥
⎦

45

🧭 OBSERVER DESIGN

46

∣
ẋ = Ax + Bu

y = Cx + Du

47

STATE OBSERVER (VERSION 1)
Simulate the system behavior

and since we don’t know better,

∣
dx̂

dt

= Ax̂+Bu

ŷ = Cx̂+Du

x̂(0) = 0.

48

Is a good asymptotic estimate of ?x̂(t) x(t)

49

🏷️ STATE ESTIMATE ERROR
The dynamics of the state estimate error
is

e = x̂− x

ė =

d

dt

(x̂− x)

=

dx̂

dt

− ẋ

= (Ax̂+Bu) − (Ax+Bu)

= Ae

50

💎 STATE ESTIMATOR V1
❌ FAILURE

The state estimator error , solution of

doesn’t satisfy in general

e(t)

ė = Ae

lim

t→+∞

e(t) = 0.

51

We have

for every value of , if and only if
 is asymptotically stable (i.e. the eigenvalues

of are in the open left-hand plane).

lim

t→+∞

e(t) = 0

e(0) = x̂(0) − x(0)

ẋ = Ax

A

52

STATE OBSERVER (VERSION 2)
Change the observer dynamics to account for
differences between and (both known values):

for some observer gain matrix (to be
determined).

ŷ y

∣
dx̂

dt

= Ax̂+Bu− L(ŷ− y)

ŷ = Cx̂+Du

L ∈ R

n×p

53

54

The new dynamics of ise = x̂− x

ė =

d

dt

(x̂− x)

=

dx̂

dt

− ẋ

= (Ax̂+Bu− L(Cx̂− Cx)) − (Ax+Bu)

= (A− LC)e

55

📝 REMINDER
The system is observable

The system is commandable.

ẋ = Ax, y = Cx

⟺

ẋ = A

t

x+ C

t

u

56

SO WHAT?
In this case, we can perform arbitrary pole assignment:

for any conjugate set of eigenvalues,

there is a matrix such that

Λ

K ∈ R

p×n

σ(A

t

− C

t

K) = Λ

57

Since , for any square matrix ,σ(M) = σ(M

t

) M

σ(A

t

− C

t

K) = σ((A−K

t

C)

t

)

= σ(A−K

t

C)

58

POLE ASSIGNMENT (OBSERVERS)
✔️ SUCCESS

Thus, if we set

we have solved the pole assignment problem for
observers:

L = K

t

σ(A− LC) = Λ

59

🔍 POLE ASSIGNMENT
Consider the double integrator

(in standard form)

ÿ = u

d

dt

[] = [] [] + []u

x

1

x

2

0 1

0 0

x

1

x

2

0

1

y = [] []1 0

x

1

x

2

60

🐍 💻

from scipy.signal import place_poles

A = array([[0, 1], [0, 0]])

C = array([[1, 0]])

poles = [-1, -2]

K = place_poles(A.T, C.T, poles).gain_matrix

L = K.T

assert_almost_equal(K, [[3.0, 2.0]])

61

d

dt

[] = [] [] + []u− [](ŷ− y)

x̂

1

x̂

2

0 1

0 0

x̂

1

x̂

2

0

1

3

2

ŷ = [] []1 0

x̂

1

x̂

2

62

🐍

def fun(t, X_Xhat):

 x, x_hat = X_Xhat[0:2], X_Xhat[2:4]

 y, y_hat = C.dot(x), C.dot(x_hat)

 dx = A.dot(x)

 dx_hat = A.dot(x_hat) - L.dot(y_hat - y)

return r_[dx, dx_hat]

63

🐍 💻

y0 = [-2.0, 1.0, 0.0, 0.0]

result = solve_ivp(

 fun=fun,

 t_span=[0.0, 5.0],

 y0=y0,

 max_step=0.1

)

64

🐍 📈

figure()

t = result["t"]

y = result["y"]

plot(t, y[0], "C0", label="x_1")

plot(t, y[2], "C0--", label=r"\hat{x}_1")

plot(t, y[1], "C1", label="x_2")

plot(t, y[3], "C1--", label=r"\hat{x}_2")

xlabel("t"); grid(); legend()

65

66

🧭 KALMAN FILTER

67

SETTING
Consider where:

the state is unknown (is unknown),

only (a noisy version of) is available.

We want a sensible estimation of .

ẋ = Ax, y = Cx

x(t) x(0)

y(t)

x̂(t) x(t)

68

We now assume the existence of state and output
disturbances and (deviations from the exact
dynamics)

Thes disturbances (or “noises”) are unknown; we are
searching for the estimate of that requires
the smallest deviation from the exact dynamics to
explain the data.

v(t) w(t)

∣
ẋ = Ax+ v

y = Cx+ w

x̂(t) x(t)

69

For a known , among all possible trajectories
of the system, find the one that minimizes

where:

 and ,

(to be continued …)

y(t) x(t)

J = ∫

+∞

0

v(t)

t

Qv(t) + w(t)

t

Rw(t) dt

Q ∈ R

n×n

R ∈ R

p×p

70

 and are symmetric (and),

 and are positive definite (denoted “ ”)

Q R R

t

= R Q

t

= Q

Q R > 0

71

HEURISTICS
If it is known that there is a large state disturbance but
small output disturbance, it makes sense to reduce the
impact of the state disturbance in the composition of

, hence to select a small wrt .J Q R

72

💎 OPTIMAL SOLUTION
Assume that is observable.

There is a state estimation , given for some
 as the solution of

The dynamics of the corresponding estimation error
 is asymptotically stable.

ẋ = Ax, y = Cx

x̂(t)

L ∈ R

n×p

∣
dx̂/dt = Ax̂− L(ŷ− y)

ŷ = Cx̂

e(t) = x̂(t) − x(t)

73

💎 ALGEBRAIC RICCATI
EQUATION

The gain matrix is given by

where is the unique matrix such that
, and

L

L = ΠC

t

R,

Π ∈ R

n×n

Π

t

= Π Π > 0

ΠC

t

RCΠ−ΠA

t

−AΠ−Q

−1

= 0.

74

OPTIMAL CONTROL FILTER
Solve the Ricatti equation for optimal control with

then define

↔

(A,B,Q,R) = (A

t

,C

t

,Q

−1

,R

−1

)

L := ΠC

t

R

75

🔍 KALMAN FILTER
Consider the system

If we believe that the state and output perturbation
are of the same scale, we may try

ẋ = v

y = x+ w

Q = [1.0],R = [1.0]

76

With , the filtering Ricatti equation becomes

whose only positive solution is

Π = [σ]

σ

2

− 2σ − 1 = 0

σ =

2 +

√

(−2)

2

− 4 × 1 × (−1)

2

= 1 +

√

2.

77

With , we end up with

Thus, the optimal filter is

L = [ℓ]

ℓ = σ = 1 +

√

2.

dx̂/dt = −(1 +

√

2)(ŷ− y)

ŷ = x̂

78

🔍 KALMAN FILTER
Consider the double integrator .

(in standard form)

ẍ = 0, y = x

d

dt

[] = [] [] + [], y = [] [] + w

x

ẋ

0 1

0 0

x

ẋ

v

1

v

2

1 0

x

ẋ

79

🐍

A = array([[0, 1], [0, 0]])

B = array([[0], [1]])

Q = array([[1, 0], [0, 1]])

R = array([[1]])

80

🐍 💻

sca = solve_continuous_are

Sigma = sca(A.T, C.T, inv(Q), inv(R))

L = Sigma @ C.T @ R

eigenvalues, _ = eig(A - L @ C)

assert all([real(s) < 0 for s in eigenvalues])

81

🐍 📈

figure()

x = [real(s) for s in eigenvalues]

y = [imag(s) for s in eigenvalues]

plot(x, y, "kx"); xlim(-2, 2); ylim(-2, 2)

plot([0, 0], [-2, 2], "k");

plot([-2, 2], [0, 0], "k")

grid(True); axis("square")

title("Eigenvalues")

82

83

🐍

def fun(t, X_Xhat):

 x, x_hat = X_Xhat[0:2], X_Xhat[2:4]

 y, y_hat = C.dot(x), C.dot(x_hat)

 dx = A.dot(x)

 dx_hat = A.dot(x_hat) - L.dot(y_hat - y)

return r_[dx, dx_hat]

84

🐍 💻

y0 = [-2.0, 1.0, 0.0, 0.0]

result = solve_ivp(

 fun=fun,

 t_span=[0.0, 5.0],

 y0=y0,

 max_step=0.1

)

85

🐍 📈

figure()

t = result["t"]; y = result["y"]

plot(t, y[0], "C0", label="x_1")

plot(t, y[2], "C0--", label=r"\hat{x}_1")

plot(t, y[1], "C1", label="x_2")

plot(t, y[3], "C1--", label=r"\hat{x}_2")

xlabel("t")

grid(); legend()

86

87

