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🐍 IMPORTS
from numpy import *

from numpy.linalg import *

from scipy.integrate import solve_ivp

from scipy.linalg import solve_continuous_are

from matplotlib.pyplot import *

from numpy.testing import *
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🐍 STREAM PLOT HELPER
def Q(f, xs, ys):

    X, Y = meshgrid(xs, ys)

    fx = vectorize(lambda x, y: f([x, y])[0])

    fy = vectorize(lambda x, y: f([x, y])[1])

return X, Y, fx(X, Y), fy(X, Y)
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🧭 OBSERVABILITY
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MOTIVATION
Controling a system generally requires the knowledge
of the state , but measuring every state variable
may be impossible (or too expensive).

Can we reduce the amount of physical sensors and still
be able to compute the state with “virtual” or
“software” sensors ?

x(t)
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🏷️ OBSERVERS
Control engineers call these software devices
observers.

First we adress their mathematical feasibility.
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🏷️ OBSERVABILITY
The system

is observable if the knowledge of  on
some finite time span  determines uniquely the
initial condition .

∣
ẋ = f(x)

y = g(x)

y(t) = g(x(t))

[0, τ]

x(0)
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📝 REMARKS
The knowledge of  determines uniquely 
via the system dynamics.

Later, observers will provide merely asymptotically
exact estimates  of , that satisfy

 when 

x(0) x(t)

x̂(t) x(t)

x̂(t) − x(t) → 0 t → +∞.
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EXTENSION
The definition of observability may be extended to
systems with (known) inputs :

In general, the input  may then be selected
specifically to generate the appropriate  that
allows us to compute .

u

∣
ẋ = f(x,u)

y = g(x,u)

u

y(t)

x(0)
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But for linear systems, the choice of  is irrelevant.

Indeed, if

and we can deduce  from  when :

u

∣
ẋ = Ax+Bu

y = Cx+Du

x(0) y(t) u = 0

y

0

(t) = Ce

At

x(0) → x(0)
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then in the general case, when we measure

we can compute

and deduce  at this stage.

y

u

(t) = Ce

At

x(0) + (H ∗ u)(t)

y

0

(t) = y

u

(t) − (H ∗ u)(t)

x(0)
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🔍 OBSERVABILITY / CAR
The position  (in meters) of a car of mass  (in kg) on
a straight road is governed by

where  the force (in Newtons) generated by its motor.

x m

mẍ = u

u
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we don’t know where the car is at ,

we don’t know what its initial speed is,

we do know that the car doesn’t accelerate ( ).

t = 0

u = 0
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If we measure the position :

 is known,

 is also computable.

Thus the system is observable.

y(t) = x(t)

x(0) = y(0)

ẋ(0) = ẏ(0)
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🤔 WHAT IF?
What if we measure the speed instead of the location ?

y(t) = ẋ(t)
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The system dynamics  yields
 thus

and any  is consistent with a measure of a
constant speed.

We can’t deduce the position of the car from the
measure of its speed; the system is not observable.

mẍ(t) = u(t) = 0

x(t) = x(0) + ẋ(0)t

ẋ(t) = ẋ(0)

x(0)
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💎 KALMAN CRITERION
The system  is observable iff:

 is the Kalman observability matrix.

ẋ = Ax, y = Cx

rank = n

⎡

⎢
⎣

C

CA

⋮

CA

n−1

⎤

⎥
⎦

[C;… ;CA

n−1

]
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🏷️ NOTATION
“ ” row concatenation of matrices.

“ ” column concatenation of matrices.

We have

,

;

[C;⋯ ;CA

n−1

]

t

= [C

t

,⋯ , (A

t

)

n−1

C

t

].
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💎 DUALITY
The system  is observable

The system  is controllable.

ẋ = Ax, y = Cx

⟺

ẋ = A

t

x+ C

t

u
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🧩 FULLY MEASURED SYSTEM
Consider

with ,  and .

ẋ = Ax, y = Cx

x ∈ R

n

y ∈ R

p

rankC = n
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1. 🧠 🧮
Is the system observable ?
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🔓 FULLY MEASURED SYSTEM
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1. 🔓
Yes! The rank of its observability matrix

is at most  and at least the rank of , which is also .
Thus by the , the system is
observable.

⎡

⎢
⎣

C

CA

⋮

CA

n−1

⎤

⎥
⎦

n C n

💎 Kalman Criterion
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🧩 INTEGRATOR CHAIN

ẋ

n

= 0, ẋ

n−1

= x

n

, ⋯ , ẋ

1

= x

2

, y = x

1
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1. 🧠 🧮
Show that the system is observable.
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🔓 INTEGRATOR CHAIN
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1. 🔓
The standard form of the dynamics associated to the
state  is characterized byx = (x

1

,… ,x

n

)

A = , C = [1, 0, 0,… , 0]

⎡

⎢
⎣

0 1 0 ⋯ 0

0 0 1 ⋱ ⋮

⋮ ⋱ ⋱ ⋱ 0

⋮ ⋱ ⋱ 0 1

0 ⋯ ⋯ 0 0

⎤

⎥
⎦
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Thus,

The observability matrix has rank  and hence the
system of observable.

C = [1, 0, 0,… , 0]

CA = [0, 1, 0,… , 0]

⋮ = ⋮

CA

n−1

= [0, 0, 0,… , 1]

n
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🧩 HEAT EQUATION
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dT

1

/dt = 0 + (T

2

− T

1

)

dT

2

/dt = (T

1

− T

2

) + (T

3

− T

2

)

dT

3

/dt = (T

2

− T

3

) + (T

4

− T

3

)

dT

4

/dt = (T

3

− T

4

)

y = T

4
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1. 🧠 🧮
Show that the system is observable.
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2. 🧮

Is it still true if the four cells are organized as a square
and the temperature sensor is in any of the corners ?
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3. 🧠 🧮
Can you make the system observable with two
(adequatly located) sensors?
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🔓 HEAT EQUATION
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1. 🔓
The standard form of the dynamics associated to the
state  is characterized byT = (T

1

,T

2

,T

3

,T4)

A = , C = [0, 0, 0, 1]

⎡

⎢
⎣

−1 1 0 0

1 −2 1 0

0 1 −2 1

0 0 1 −1

⎤

⎥
⎦
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Therefore the observability matrix is

whose rank is 4: the system is observable.

⎡

⎢
⎣

0 0 0 1

0 0 1 −1

0 1 −3 2

1 −5 9 5

⎤

⎥
⎦
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2. 🔓
In the square configuration, there is no way to get
observability with a single thermometer.
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Indeed the new  matrix would be

and the new  matrix one of

A

A =

⎡

⎢
⎣

−2 1 1 0

1 −2 0 1

−1 0 −2 1

0 1 1 −2

⎤

⎥
⎦

C

[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]
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The corresponding observability matrices are

, ,

⎡

⎢
⎣

1 0 0 0

−2 1 1 0

4 −4 −4 2

4 −4 −4 2

⎤

⎥
⎦

⎡

⎢
⎣

0 1 0 0

1 −2 0 1

−4 6 2 −4

−4 6 2 −4

⎤

⎥
⎦

,

⎡

⎢
⎣

0 0 1 0

−1 0 −2 1

4 0 4 −4

4 0 4 −4

⎤

⎥
⎦

⎡

⎢
⎣

0 0 0 1

0 1 1 −2

0 −4 −4 6

0 −4 −4 6

⎤

⎥
⎦
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All the possible observability matrices in this case have
rank 2 or 3 < 4.
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3. 🔓
With 2 sensors, “it depends” (on the location of the
sensors). For example:
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The first case corresponds to

the second one to

C = [ ]

1 0 0 0

0 0 0 1

C = [ ]

0 1 0 0

0 0 0 1
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The observability matrices are

The first has rank 3 the second rank 4

,

⎡

⎢
⎣

1 0 0 0

0 0 0 1

−2 1 1 0

0 1 1 −2

4 −4 −4 2

0 −4 −4 6

4 −4 −4 2

0 −4 −4 6

⎤

⎥
⎦

⎡

⎢
⎣

0 1 0 0

0 0 0 1

−1 −2 0 1

0 1 1 −2

−4 6 2 −4

0 −4 −4 6

−4 6 2 −4

0 −4 −4 6

⎤

⎥
⎦
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🧭 OBSERVER DESIGN
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∣
ẋ = Ax + Bu

y = Cx + Du
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STATE OBSERVER (VERSION 1)
Simulate the system behavior

and since we don’t know better,

∣
dx̂

dt

= Ax̂+Bu

ŷ = Cx̂+Du

x̂(0) = 0.
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Is  a good asymptotic estimate of ?x̂(t) x(t)
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🏷️ STATE ESTIMATE ERROR
The dynamics of the state estimate error 
is

e = x̂− x

ė =

d

dt

(x̂− x)

=

dx̂

dt

− ẋ

= (Ax̂+Bu) − (Ax+Bu)

= Ae
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💎 STATE ESTIMATOR V1
❌ FAILURE

The state estimator error , solution of

doesn’t satisfy in general

e(t)

ė = Ae

lim

t→+∞

e(t) = 0.
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We have

for every value of , if and only if
 is asymptotically stable (i.e. the eigenvalues

of  are in the open left-hand plane).

lim

t→+∞

e(t) = 0

e(0) = x̂(0) − x(0)

ẋ = Ax

A
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STATE OBSERVER (VERSION 2)
Change the observer dynamics to account for
differences between  and  (both known values):

for some observer gain matrix  (to be
determined).

ŷ y

∣
dx̂

dt

= Ax̂+Bu− L(ŷ− y)

ŷ = Cx̂+Du

L ∈ R

n×p
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The new dynamics of  ise = x̂− x

ė =

d

dt

(x̂− x)

=

dx̂

dt

− ẋ

= (Ax̂+Bu− L(Cx̂− Cx)) − (Ax+Bu)

= (A− LC)e
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📝 REMINDER
The system  is observable

The system  is commandable.

ẋ = Ax, y = Cx

⟺

ẋ = A

t

x+ C

t

u
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SO WHAT?
In this case, we can perform arbitrary pole assignment:

for any conjugate set  of eigenvalues,

there is a matrix  such that

Λ

K ∈ R

p×n

σ(A

t

− C

t

K) = Λ
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Since , for any square matrix ,σ(M) = σ(M

t

) M

σ(A

t

− C

t

K) = σ((A−K

t

C)

t

)

= σ(A−K

t

C)
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POLE ASSIGNMENT (OBSERVERS)
✔️ SUCCESS

Thus, if we set

we have solved the pole assignment problem for
observers:

L = K

t

σ(A− LC) = Λ
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🔍 POLE ASSIGNMENT
Consider the double integrator 

(in standard form)

ÿ = u

d

dt

[ ] = [ ] [ ] + [ ]u

x

1

x

2

0 1

0 0

x

1

x

2

0

1

y = [ ] [ ]1 0

x

1

x

2
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🐍 💻

from scipy.signal import place_poles

A = array([[0, 1], [0, 0]])

C = array([[1, 0]])

poles = [-1, -2]

K = place_poles(A.T, C.T, poles).gain_matrix

L = K.T

assert_almost_equal(K, [[3.0, 2.0]])
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d

dt

[ ] = [ ] [ ] + [ ]u− [ ](ŷ− y)

x̂

1

x̂

2

0 1

0 0

x̂

1

x̂

2

0

1

3

2

ŷ = [ ] [ ]1 0

x̂

1

x̂

2
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🐍

def fun(t, X_Xhat):

    x, x_hat = X_Xhat[0:2], X_Xhat[2:4]

    y, y_hat = C.dot(x), C.dot(x_hat)

    dx = A.dot(x)

    dx_hat = A.dot(x_hat) - L.dot(y_hat - y)

return r_[dx, dx_hat]
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🐍 💻

y0 = [-2.0, 1.0, 0.0, 0.0]

result = solve_ivp(

    fun=fun, 

    t_span=[0.0, 5.0], 

    y0=y0, 

    max_step=0.1

)
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🐍 📈

figure()

t = result["t"]

y = result["y"]

plot(t, y[0], "C0", label="$x_1$")

plot(t, y[2], "C0--", label=r"$\hat{x}_1$")

plot(t, y[1], "C1", label="$x_2$")

plot(t, y[3], "C1--", label=r"$\hat{x}_2$")

xlabel("$t$"); grid(); legend()
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🧭 KALMAN FILTER
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SETTING
Consider  where:

the state  is unknown (  is unknown),

only (a noisy version of)  is available.

We want a sensible estimation  of .

ẋ = Ax, y = Cx

x(t) x(0)

y(t)

x̂(t) x(t)
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We now assume the existence of state and output
disturbances  and  (deviations from the exact
dynamics)

Thes disturbances (or “noises”) are unknown; we are
searching for the estimate  of  that requires
the smallest deviation from the exact dynamics to
explain the data.

v(t) w(t)

∣
ẋ = Ax+ v

y = Cx+ w

x̂(t) x(t)
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For a known , among all possible trajectories 
of the system, find the one that minimizes

where:

 and ,

(to be continued …)

y(t) x(t)

J = ∫

+∞

0

v(t)

t

Qv(t) + w(t)

t

Rw(t) dt

Q ∈ R

n×n

R ∈ R

p×p
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 and  are symmetric (  and ),

 and  are positive definite (denoted “ ”)

Q R R

t

= R Q

t

= Q

Q R > 0
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HEURISTICS
If it is known that there is a large state disturbance but
small output disturbance, it makes sense to reduce the
impact of the state disturbance in the composition of

, hence to select a small  wrt .J Q R
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💎 OPTIMAL SOLUTION
Assume that  is observable.

There is a state estimation , given for some
 as the solution of

The dynamics of the corresponding estimation error
 is asymptotically stable.

ẋ = Ax, y = Cx

x̂(t)

L ∈ R

n×p

∣
dx̂/dt = Ax̂− L(ŷ− y)

ŷ = Cx̂

e(t) = x̂(t) − x(t)
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💎 ALGEBRAIC RICCATI
EQUATION

The gain matrix  is given by

where  is the unique matrix such that
,  and

L

L = ΠC

t

R,

Π ∈ R

n×n

Π

t

= Π Π > 0

ΠC

t

RCΠ−ΠA

t

−AΠ−Q

−1

= 0.
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OPTIMAL CONTROL  FILTER
Solve the Ricatti equation for optimal control with

then define

↔

(A,B,Q,R) = (A

t

,C

t

,Q

−1

,R

−1

)

L := ΠC

t

R
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🔍 KALMAN FILTER
Consider the system

If we believe that the state and output perturbation
are of the same scale, we may try

ẋ = v

y = x+ w

Q = [1.0],R = [1.0]
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With , the filtering Ricatti equation becomes

whose only positive solution is

Π = [σ]

σ

2

− 2σ − 1 = 0

σ =

2 +

√

(−2)

2

− 4 × 1 × (−1)

2

= 1 +

√

2.
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With , we end up with

Thus, the optimal filter is

L = [ℓ]

ℓ = σ = 1 +

√

2.

dx̂/dt = −(1 +

√

2)(ŷ− y)

ŷ = x̂
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🔍 KALMAN FILTER
Consider the double integrator  .

(in standard form)

ẍ = 0, y = x

d

dt

[ ] = [ ] [ ] + [ ], y = [ ] [ ] + w

x

ẋ

0 1

0 0

x

ẋ

v

1

v

2

1 0

x

ẋ
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🐍

A = array([[0, 1], [0, 0]])

B = array([[0], [1]])

Q = array([[1, 0], [0, 1]])

R = array([[1]])
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🐍 💻

sca = solve_continuous_are

Sigma = sca(A.T, C.T, inv(Q), inv(R))

L = Sigma @ C.T @ R

eigenvalues, _ = eig(A - L @ C)

assert all([real(s) < 0 for s in eigenvalues])
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🐍 📈

figure()

x = [real(s) for s in eigenvalues]

y = [imag(s) for s in eigenvalues]

plot(x, y, "kx"); xlim(-2, 2); ylim(-2, 2)

plot([0, 0], [-2, 2], "k");

plot([-2, 2], [0, 0], "k")   

grid(True); axis("square")

title("Eigenvalues")
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🐍

def fun(t, X_Xhat):

    x, x_hat = X_Xhat[0:2], X_Xhat[2:4]

    y, y_hat = C.dot(x), C.dot(x_hat)

    dx = A.dot(x)

    dx_hat = A.dot(x_hat) - L.dot(y_hat - y)

return r_[dx, dx_hat]
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🐍 💻

y0 = [-2.0, 1.0, 0.0, 0.0]

result = solve_ivp(

    fun=fun, 

    t_span=[0.0, 5.0], 

    y0=y0, 

    max_step=0.1

)
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🐍 📈

figure()

t = result["t"]; y = result["y"]

plot(t, y[0], "C0", label="$x_1$")

plot(t, y[2], "C0--", label=r"$\hat{x}_1$")

plot(t, y[1], "C1", label="$x_2$")

plot(t, y[3], "C1--", label=r"$\hat{x}_2$")

xlabel("$t$")

grid(); legend()
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