
A Higher-Order Extension for Imperative Synchronous
Languages

Eric Vecchié
Mines ParisTech
60 Bd St Michel

FR-75272 Paris Cedex 06
Eric.Vecchie@ensmp.fr

Jean-Pierre Talpin
INRIA Rennes - Bretagne Atlantique

Campus de Beaulieu
FR-35042 Rennes Cedex

Jean-Pierre.Talpin@irisa.fr

Sébastien Boisgérault
Mines ParisTech
60 Bd St Michel

FR-75272 Paris Cedex 06
Sebastien.Boisgerault@ensmp.fr

ABSTRACT
This article presents the very first effective design of higher-
order modules in the synchronous programming language
Esterel. Higher-order modules, together with the robust sep-
arate compilation scheme that implements it, allow us to
address a yet unexplored application spectrum ranging from
rapid prototyping of embedded functionality to hot recon-
figuration of embedded software within the formal modeling
framework of the “synchronous hypothesis”. While exten-
sions of data-flow synchronous languages had already been
proposed for Lustre [11] and Signal [25], the adaptation of
similar programming concepts to imperative synchronous
frameworks like Esterel has long posed major technical chal-
lenges, due to the specificity of its model of computation.
We present a framework including a formal semantics, a type
system, and a modular code generator, that tackle this chal-
lenge. We consider a specific stack-based module call con-
vention and a simple event pooling protocol ; in consequence
signals can refer to modules and modules can be transmitted
and instantiated by referencing a signal. We define a type
system that computes the potential emissions of a module
and prove it sound. Our type system seamlessly fits an ex-
tension of Esterel’s constructive semantics with higher-order
modules.

1. INTRODUCTION
Synchronous programming languages are domain-specific

languages dedicated to the design of real-time embedded
systems. Their semantics are based on the synchronous hy-
pothesis stating that the execution of a program is discretely
divided into atomic reactions. Enjoying efficient compilation
methods, verification and automatic distribution tools, these
languages are now employed in various industrial design pro-
cesses (avionics, nuclear plants...). In this domain, the im-
perative style of Esterel [5] has been specifically designed to
ease programming of control-dominated applications.

Basically, an Esterel module corresponds to a finite state
machine reading input values and producing values on com-
munication channels called signals. Therefore, as a first-
order language, it is traditionally not possible to communi-
cate modules on signals in Esterel. Modern real-time em-
bedded systems however, often require to be dynamically

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SCOPES ’10, June 28-29, 2010, St. Goar, Germany
Copyright c© 2010 ACM 978-1-4503-0084-1/10/06 ...$10.00.

reconfigurable, that is to be able to change parts of code
to be executed at run-time. Concrete applications can be
found in various domains like network switches, space mis-
sions, and more generally domains where quality of service
must often be adapted with respect to the environment. A
more concrete example concerns authentication and secu-
rity systems in mobile telephony: authentication features in
cellular phones are both heterogeneous and likely to evolve
[23]. To ensure functioning of the phone, the system has
then to reconfigure its identification protocol dynamically
with respect to the nearest base station.

The increasing popularity of reconfigurable systems comes
naturally with the increasing need of tools able to design
them. In the context of synchronous languages, the possibil-
ity to write higher-order modules appears then as a natural
answer to these requirements. Higher-order were success-
fully introduced into data-flow synchronous languages [11,
25, 13]. We propose such an extension for the imperative
style of the synchronous language Esterel. More precisely,
we address the problem of the constructiveness in the con-
text of a modular execution scheme. Indeed, modularity in
the sense of a separate compilation and execution of modules
is a major issue in Esterel and also the key for the introduc-
tion of higher-order. For this purpose, we seamlessly extend
the constructive semantics of Esterel with a single rule ex-
pressing the instantiation of a module from the value of a
signal. To deal with constructiveness issues, we then define
and show the correctness of a type system which allows us
to know the potential emissions of a higher-order module.

1.1 Related Work
Higher-order features for concurrent systems have been

extensively studied in the context of process calculi [19].
These calculi provide very powerful features like dynamic
creation of processes and migration using a small collec-
tion of primitives. In some of these calculi, communication
channels themselves can be sent through other channels, al-
lowing the topology of process interconnections to change.
Unlike Esterel, process calculi are asynchronous and non-
deterministic and their model of computation are conflicting
with the synchronous model we are considering here.

Some closely related approaches are based on the syn-
chronous model. The reactive approach [9] provide a way
to dynamically create new processes. The ULM language
[7] combines the synchronous approach with the mobility
feature inspired by the process calculi. In these approaches
however the reaction to the absence of a signal are delayed to
the next reaction. In Esterel the absence of a signal is likely
to trigger a reaction in the same atomic instant. This imme-
diate reaction to absence is at the heart of the constructive
semantics of Esterel. It is also the main reason making its
modular compilation difficult.

Today, solutions for programming reconfigurable systems
are mainly based on middleware approaches [2, 10, 20]. The

main drawback of such approaches is the lack of high-level
constructs and fine control on the behavior of the running
program. As an example, let us consider a module M that
has to be dynamically replaced by a module M ′. Let us sup-
pose that M ′ requires an initialization phase running over
several reactions (or suppose that M requires a finalization
phase to reach a stable state). If M/M ′ is a module respon-
sible for some critical task and must not be interrupted, then
M must keep on running until M ′ becomes fully operational.
This simple example illustrates the fact that dynamic re-
configuration can rely on some strong interactions with the
running program. Middleware solutions can then be arbi-
trarily complicated or even impossible to program whereas
a higher-order based designs remain simple.

1.2 Modularity
The introduction of higher order in synchronous languages

is made possible by the separate compilation and execution
of synchronous modules. We start from the very same no-
tion of modular compilation as in general-purpose languages
like C: the translation of an Esterel module into binary code
with a header file describing its interface. The instantiation
of a module is simply realized by passing its parameters and
executing its code through simple calling conventions. Our
implementation is based on the key idea of defining con-
current coroutines and on a minimalist runtime system to
execute separately compiled modules.

Early Work. Because it was thought to make causality anal-
ysis more difficult, modular compilation was not considered
in early implementations of Esterel. Instead, early Esterel
compilers generate code from a data-structure representing
a flattened and inlined expansion of the source program.
For instance, [6] translates a program into an extended fi-
nite state machine whose transitions are decorated with code
fragments. The obvious disadvantage of this technique is the
potential state-space explosion of the automaton. Its main
advantage is the very short execution time of the generated
code. Compilation techniques achieving a polynomial space
complexity were first obtained by using systems of equations
to symbolically represent the automaton of a program [4].
This approach was successfully used for hardware synthesis
and it is still at the core of commercial tools, although the
generated software is sometimes slower. Another approach
is based on the translation of programs into concurrent con-
trol flow graphs [15, 21] whose sizes is in linear proportion of
the given program. At each instant, the control flow graph
is visited until active nodes are found to trigger the execu-
tion of the corresponding sub-tree. The approach followed
by the Saxo-RT compiler [12] translates the program into an
event graph.

Recent Work. Some works [24, 26] address different no-
tions of “modular compilation”. In [26], the generated code
is able to partially deal with undefined inputs by using a
three-valued logic. The generated program tries to compute
as many outputs as it can while ignoring inputs that are still
unknown. In [24], the Esterel dialect Quartz is translated into
a “job language”. This translation can be conceptually re-
garded as a graph of simultaneously active jobs where each
job contains an atomic task. In these approaches, the in-
creased effort involved for the separate compilation of mod-
ules separately does not spare “tuning” the generated code
where it is used and depending on the calling context. Un-
like our approach, it implies that the code of instantiated
modules must be duplicated. Some recent works [18] use
multi-function interfaces to generate modular code for syn-
chronous block diagrams. Each function in the interface is
responsible for the evaluation of some outputs through the

evaluation of the relevant part of the module. The trade-off
between modularity (decreasing with the number of func-
tions in the interface) and reusability (increasing with the
number of functions) is also addressed. Earlier works on Sig-
nal and Cronos [3, 16] actually use very similar techniques
of clustering, interface synthesis and scheduling to perform
modular compilation. In our approach, modularity is maxi-
mized since the compilation of each module generates a sin-
gle function. Reusability is nevertheless ensured by a flex-
ible model of execution which allows causality issues to be
resolved dynamically at run-time.

1.3 Syntax of Esterel
An Esterel module consists of an interface where input

and output signals are defined, followed by a body. Syntax
of program statements is provided by the following simple
grammar :

P ::= pause | signal S in P end
| S := E | if E then P else P
| P ; P | abort P when E
| P ‖ P | suspend P when E
| loop P end

with S ranging over signals and E ranging over expres-
sions. Naive semantics of Esterel goes as follows : programs
behaviors are discretely divided into instants or reactions.
Control threads are executed until reaching a pause state-
ment, which is the main statement which cuts behaviors
into atomic instants. In a reaction cycle, input signals are
read/sampled, and internal computation takes place until
output signals are emitted in answer, and the program state
is progressed. Instants are based on a common logical clock,
which paces all parallel threads. Of course in a reaction
various parallel threads do not run independently, as they
may synchronize and affect one another causally (hardware
people would say “combinationally”). When control reaches
a present(S) boolean condition (testing signal presence at
the current instant), it may have to postpone execution un-
til a consistent definitive value and status are obtained for
the signal inside the current reaction (either because it is
emitted somewhere in parallel, or because other threads of
execution progressed to a point where provably all potential
emissions were discarded).

Example. Dynamically reconfigurable systems can be ex-
pressed in the syntax of Esterel as in the following example:

module RECONF(M : mod(...), params...)
loop
abort
run (? M)(params...); halt

when present(M)
end

end module

where “halt” is syntactic sugar for “loop pause end”. In
this example, a module M is given as input of the module
RECONF. The value of the module to be executed is carried
by an input signal. This module is started/restarted each
time the signal is emitted (each time its value changes). The
module RECONF can thus be executed in parallel to another
one responsible for choosing the module to be executed.

The paper is organized as follows: section 2 describes the
considered constructive semantics of Esterel. The section 3
gives the semantic rules for the introduction of higher-order
modules and section 4 describes the type system we use to
deal with constructiveness issues in Esterel. The design of
our modular compiler is then described in section 5. Section
6 provides some benchmarks and we finally conclude this
article by some future works.

2. THE SEMANTICS OF ESTEREL
We consider the logical behavioral semantics of Esterel

given in [8] (refer to these works for further details). This
semantics is equivalent to the “official” semantics given in
[5] but relies on a tiny but sufficient simple subset of the
language where loops, preemption and suspension are dis-
carded. In essence, loops are captured by the semantics of
the sequence and preemption and suspensions are captured
by the one of the test. Furthermore, constructiveness issues
are more clearly addressed in this formalism. A process is
interpreted by a series of transitions whose triggers are gov-
erned by rules of structured operational semantics. A run:

P
O1−−→
I1

P1 . . . Pn−1

On−−→
In

Pn

depicts the successive reactions of a process P to the in-
puts I1..n producing the outputs O1..n. The meaning of a
transition is defined by an auxiliary chain of uncompleted
reactions subject to SOS rules:

P
O−→
I Q⇔ P, I

⊥−−→ P1, E1
⊥−−→ . . . Pm, Em

k−→ Q, I ∪O

where k ∈ {0, 1}. The status ⊥ means that the execution
of the current reaction is not completed. At the end of a
reaction, the status k is either 0 to mean stopped or 1 for
waiting. We call I,O or E an environment that maps names
to values and P,Q a process. We have the following axioms
and rules [5]:

• Nothing:

nothing, E
0−→ nothing, E

• Pause:

pause, E
1−→ nothing, E

• Assignment (emission of values). As we consider val-
ued signals here and for simplification issue, we only
consider programs where each signal is emitted once
in each atomic reaction:

s:=v,E ∪ {s⊥v′}
0−→ nothing, E ∪ {s+v }

where v is the value and b is the status (+ for present,
− for absent or ⊥ for undefined) of a signal sb

v.

• Sequence:

P,E
k−→ P ′, E′ k 6= 0

P ;Q,E
k−→ P ′ ;Q,E′

P,E
0−→ P ′, E′

P ;Q,E
⊥−−→ Q,E′

• Tests:

s+v ∈ E
if s then P else Q,E

⊥−−→ P,E

s−v ∈ E
if s then P else Q,E

⊥−−→ Q,E

• Parallelism:

P,E
k−→ P ′, E′

P ⊥||l Q,E ⊥−−→ P ′ k||l Q,E′

Q,E
l−→ Q′, E′

P k||⊥Q,E ⊥−−→ P k||l Q′, E′

k 6= ⊥ l 6= ⊥

P k||l Q,E
max(k,l)
−−−−−−−→ P ⊥||⊥Q,E

• Local signals:

P,E ∪ {Π(sb
v, P)} ⊥−−→ P ′, E′ ∪ {sb′

v′}
signal sb

v inP,E
⊥−−→ signal sb′

v′ inP
′, E′

P,E ∪ {Π(sb
v, P)} k−→ P ′, E′ ∪ {sb′

v′} k 6= ⊥
signal sb

v inP,E
k−→ signal s⊥v′ inP

′, E′

where Π(sb
v, P) depends on the status of the signal s

or on π(P), the set of potentially emitted signals in P :

Π(sb
v, P) =

s−⊥ if b = ⊥ and s 6∈ π(P)
sb

v otherwise

2.1 Constructiveness
Several variations of the constructive semantics of Esterel

are presented in [8]. The semantics can thus be more or
less restrictive depending on the way the so-called“Potential
Function”π(P) is defined. We consider the v3 version of the
constructive semantics where π(P) is defined by:

• Nothing, pause:

π(nothing) = π(pause) = ∅

• Assignment:

π(s:=v) = {s}

• Sequence:

π(P ;Q) =

π(P) ∪ π(Q) if γ(P)
π(P) otherwise

• Tests:

π(if s then P else Q) = π(P) ∪ π(Q)

• Parallelism:

π(P k||l Q) =

8><>:
π(P) ∪ π(Q) if k = l = ⊥
π(P) if k = ⊥ and l 6= ⊥
π(Q) if k 6= ⊥ and l = ⊥
∅ otherwise

• Local signals:

π(signal sb
v inP) = π(P) \ {s}

The predicate γ(P) is true if the execution of P can be
instantaneous. We have:

• Nothing, assignment:

γ(nothing) γ(s:=v)

• Sequence:

γ(P) γ(Q)

γ(P ;Q)

• Tests:

γ(P)

γ(if s then P else Q)

γ(Q)

γ(if s then P else Q)

• Parallelism:

γ(P 0||0Q)

γ(P)

γ(P ⊥||0Q)

γ(Q)

γ(P 0||⊥Q)

γ(P) γ(Q)

γ(P ⊥||⊥Q)

• Local signals

γ(P)

γ(signal sb
v inP)

The correctness of this constructive semantics, i.e the prop-
erty intuitively stating that “all signals that are emitted are
indeed detected”, were also proven in [8].

3. HIGHER-ORDER EXTENSION
A higher-order extension of Esterel requires the addition

of the following simple rule stating that a module whose
value is carried by a signal can be instantiated through it:

sb
v ∈ E b 6= ⊥ v = module(s1, . . . sn) .P

run (?s)(v1, . . . vn), E
⊥−−→ P [v1, . . . vn/s1, . . . sn], E

Without further information, the computation of possibly
emitted signal in such statements has to consider the “worst
case” where any parameter of the module can be emitted
and where the execution of the module can be instantaneous.
The value of the potential function for higher-order instan-
tiation of modules is then:

π(run (?s)(v1, . . . vn)) = {v1, . . . vn}

and we have:

γ(run (?s)(v1, . . . vn))

A better solution is to capture this information in a type
system which flags for each module:

1. the output signals of a module that can possibly be
emitted when the module is started (π(P)),

2. if the execution of the module can be instantaneous
(γ(P)).

Closures. Esterel modules are traditionally declared at the
top-level. It is nevertheless possible to introduce closures
and to allow nested declarations of modules as it is the case
in “traditional” functional languages:

module EXT(I: sig, M: mod(sig))

module INT(O: sig)
await I;
emit O

end module

M := INT
end module

The “emit” operator is syntactic sugar for the emission of
pure signals. In this example, the signal I is captured by
the nested module INT. This module is then emitted on M so
that I escapes and remains accessible in M. As the correct
execution of programs requires the knowledge of potentially
emitted signals π(P), the emission of any “external” signal
should be prohibited at the first reaction of any module.
This is not the case for the next reactions since the body of
the module is then “expanded”.

Causality Issues. Higher-order offers a way to transmit
modules on signal, including modules that are written after
the main program has been started. Causality in the con-
text of higher-order is not a static issue. In our approach,
causality issues are therefore resolved at run-time. Our ma-
jor concern is the correct execution of the programs, that
is the correct ordering of instructions. Let us consider the
following example:

1 if present(I) then emit S1;
2 if present(S2) then emit O

||
3 if present(S1) then emit S2

The correct execution of this program starts with the be-
ginning of the first thread (at line 1), then carry on to the
second one (at line 3) and finally resume the first one (at
line 2). This program is a friendly illustration of the prob-
lem. In real life we might face some nastier configurations
where such three conditional statements are nested in dif-
ferent higher-order modules. Section 5 provides practical
solutions to this problem.

In Esterel, the composition of two correct modules may
generate a causally incorrect program. This is typically the
case in the following program:

present(S) then nothing else emit S

where S is absent if it emitted and present if it is not: this is
incorrect in Esterel. In our approach, this problem is related
to the presence of deadlocks in the program. Code genera-
tion and rejection of causally incorrect programs should be
independent tasks. The detection of causally incorrect pro-
grams is a major concern that deserves a dedicated article
but it is not in the scope of this one: in our approach, we
guarantee the correct execution of higher-order programs
under the hypothesis that the programs are causally cor-
rect. In our compiler however, deadlocks are easily detected
at run-time.

4. TYPE SYSTEM
As a motivating example, let us consider the following

simple Esterel program:

module MOD(M, S1, S2)
if present(M) then
if present(S1) else
run (? M)(S1, S2)

end if
end if

end module

So as to remain constructively correct, the module passed
on M is not allowed to emit S1 in the first instant. We write:

mod(sig, Π sig)

the type expected for the signal M where the flag “Π” indi-
cates that the signal can be emitted immediately. We also
have subtyping since a module of type:

mod(sig, sig)

could also be received on M without problem. Let us now
consider the following examples:

module A0(s: sig)
pause; emit s

end module

module A1(s: Π sig)
emit s; pause

end module

The type of A0 is “smaller” than the type of A1 in the sense
that you can use A0 each time you expect A1.

module B0(a: mod(sig), s: sig)
run (? a)(s)

end module

module B1(a: mod(Π sig), s: sig)
pause; run (? a)(s)

end module

We have B1 v B0 (Contravariance).

module C0(a: mod(sig))
a := A0

end module

module C1(a: mod(Π sig))
a := A1

end module

We now have C0 v C1 (Covariance). In the case of B0 and
B1, signal a is used as an input: the subtyping relation is
contravariant. In the case of C0 and C1, signal a is used as
an output: the subtyping relation is covariant. In our type
system, we then choose to make the distinction between the
input type and the output type of signals.

4.1 Definition
As we want to allow subtyping, our type system has the

structure of a lattice and the type t of a module is defined
by:

t ::= m | > | ⊥
m ::= [Γ] mod([Π] s, . . . [Π] s)

s ::= sig of(in : t, out : t)

where Γ and Π are the markers indicating respectively that
a module can be instantaneous (Γ) and that a signal is possi-
bly immediately emitted (Π). > and ⊥ are respectively the
greatest and the least module type such that ∀t, t v > and
⊥ v t. The parameters of a module are signal where value
can flow from caller to callee and vice versa. For a matter
of formalization, the type of a signal is then divided into its
input type and its output type. This can also be seen as an
assume/guarantee pair where:

1. the assumption is made that any value read on the
signal is “smaller” than its input type,

2. the guarantee is given that any value emitted on the
signal is “smaller” than its output type.

The subtyping relation between signals S v S′ is covariant
in the input and contravariant in the output. If we suppose
the types S and S′ to be:

S = sig of(in : I, out : O)

S′ = sig of(in : I ′, out : O′)

Then we have:

S v S′ ⇔ I v I ′ and O′ v O
This distinction between the input type and the output type
of a signal does not mean that these types can be completely
different. Indeed, for any signal of type:

sig of(in : I, out : O)

there exists the implicit subtyping relation O v I as we
show in section 4.3. If the type of a signal does not respect
this constraint then this signal will be impossible to use con-
cretely without breaking the type correctness of the program

defined in section 4.2. In this system, an input signal writ-
ten “input s:I” in the concrete Esterel syntax has then a
type of the form:

sig of(in : I, out : ⊥)

An output signal written:

output s: O

has a type of the form:

sig of(in : >, out : O)

The subtyping relation for module types is contravariant. If
we suppose the module types M and M ′ to be:

M = i mod(p1 T1, . . . pn Tn)

M ′ = i′ mod(p′1 T
′
1, . . . p

′
n T ′n)

We then have M vM ′ if and only if:

(i = Γ)⇒ (i′ = Γ) and
∀k ∈ [1..n] (pk = Π)⇒ (p′k = Π) and T ′k v Tk

The main advantage of using two different types for signals
is illustrated by the following example where a module M
using one formal parameter is declared:

module M(s: sig of(in : I, out : O))
...

end module

The couple of types I and O defines a range for possible
use cases for M: with our type system, it is then possible
to instantiate the module M with any signal of type T (i.e.
sig of(in : T, out : T)) as soon as T verifies O v T v I. This
precision would be impossible to obtain with a unique type.

With such type system, the definition of the potential
function for higher-order module instantiation can be re-
fined. Thus, if the type of a signal s is:

s : sig of(in : I, out : O)

where:

I = i mod(p1 T1, . . . pn Tn)

then we have:

π(run (?s)(v1, . . . vn)) = {vi | (pi = Π)}

and:

i = Γ

γ(run (?s)(v1, . . . vn))

The types T1, . . . Tn of the parameters are supposed to be
given by the programmer but the flags i and p1, . . . pn could
be inferred easily. In future works we intend to infer more
type information from the structure of the program and from
a static analysis of its dependencies.

4.2 Type Correctness
Let C (D,P) be the predicate indicating that a program P

is correctly typed given the environment D. An environment
D is a list of declarations relating names x to types T . We
write D(x) for the type t associated with the name x in the
environment D containing the declaration [x : T]:

D ::= ε | D, [x : T]

By definition of C (D,P), the following properties hold:

• Nothing, pause:

C (D,nothing) C (D,pause)

• Sequence:

C (D,P) C (D,Q)

C (D,P ;Q)

• Tests:

C (D,P) C (D,Q)

C (D, if s then P else Q)

• Parallelism:

C (D,P) C (D,Q)

C (D,P k||l Q)

• Assignment. If we have:

D(s) = sig of(in : I, out : O)

D(v) = I ′ or D(v) = sig of(in : I ′, out : O′)

then:

I ′ v O
C (D, s:=v)

• Local signals. If we have:

D′ = D, [s : sig of(in : T, out : T)]

then:

C (D′, P)

C (D, signal s : T inP)

• Module instantiation. If we have:

D(s) = sig of(in : I, out : O)

I = i mod(p1 T1, . . . pn Tn)

D(vk) = T ′k

then:

∀k ∈ [1..n] T ′k v Tk

C (D, run (?s)(v1, . . . vn))

• Module declaration. If we have:

D(m) = i mod(p1 T1, . . . pn Tn)

D′ = D, [s1 : T1], . . . [sn : Tn]

then:

γ(P)⇒ (i = Γ)
∀k ∈ [1..n] sk ∈ π(P)⇒ (pk = Π)

C (D′, P)

C (D,module m (s1 : T1, . . . sn : Tn) .P)

4.3 Soundness
As for the semantics, the type system is sound if all signals

that are emitted are indeed detected:

∀D : C (D,P) and P,E
k−→ P ′, E′

⇒ C
`
D,P ′

´
and ∀s+v ∈ E′ − E s ∈ π(P)

This property were proven for the standard Esterel seman-
tics in [8]. The introduction of higher-order does not change
the structure of this proof but we have to prove additionally
that a signal used for the instantiation of a module contains
no “spurious” value. Concerning the type system, this comes
down to say that all the potential emissions of a higher-order
module being instantiated are indeed captured by the type
system. In other words, we have to show that, given an

environment for signal values E and an environment of dec-
larations D, then the instantiation of a higher-order module
run (?s)(v1, . . . vn) always verifies:

D(s) = sig of(in : I, out : O)

I = i mod(p1 T1, . . . pn Tn)

sb
v ∈ E and v = module(s1, . . . sn) .P

γ(P)⇒ (i = Γ)

∀k ∈ [1..n] sk ∈ π(P)⇒ (pk = Π)

It is then sufficient to prove that, if a program P is correctly
typed according to C (D,P), then the type of v is always
“smaller” than the type I. We then have to prove by struc-
tural induction that for any signal s, any value emitted on
s is “smaller” than any type expected on s. As a remark, we
only consider “correct” programs where signals are always
assigned before being read.

Sketch of Proof. We prove by induction that for any signal
s, there exists a type T0 such that T0 is “smaller” than any
expected type and “bigger” than any value emitted on s:

• The trivial case arise in the context of a local declara-
tion:

signal s : T inP

In this case, the type system says:

D(s) = sig of(in : T, out : T)

In this context we have T0 = T verifying the prop-
erty for any correctly typed emission s:=v and any
correctly typed reading (?s) of s in P .

• By structural induction, a signal s can be passed as
parameters to another module run (?m)(s). The type
of s and m are supposed to be:

D(s) = sig of(in : I, out : O)

D((?m)) = im mod(pm Tm)

First, the property that the value of m is correct with
respect to its type has to and can itself be proven by
structural induction: more generally, the proof of the
property must always consider signals of type mod(T)
before signals of type T . As recurrence hypothesis, we
then suppose we have T0 such that T0 v I and O v T0.
If the expected type Tm for the parameter of (?m) has
the form:

Tm = sig of(in : Im, out : Om)

then the type correctness rules imply that:

T v Tm and then I v Im and Om v O

We finally can prove that the property is also verified
by structural induction:

T0 v Im and Om v T0

5. OUR COMPILER
We implemented a lightweight compiler able to deal with

higher-order Esterel modules and complying with the con-
structive semantics given in section 2. The compilation
method tries to mimic the well-known code generation tech-
niques described in classical compilation books, like the well-
known Dragon Book [1]. Expressions are flattened and trans-
lated into assembly code sequences. Conditional statements
are replaced by conditional gotos and function calls use the

stack for passing the parameters and saving the register con-
text of the caller.

In our approach, the execution scheme is inspired by the
reactive kernel of Junior [17]. This tool is a relative of the
Esterel language used to write reactive applications through
a Java API and featuring a delayed reaction to absence. In
Junior, each reaction step executes and reduces a tree repre-
senting the instantaneous state of the reactive program and
reflecting its original structure. We use a mechanism similar
to coroutines [14] so that the control yields at some points
of the generated program. These coroutines are then hierar-
chically nested to reflect the control structure of the source
program.

Runtime System. A Runtime System maintains a collection
of cooperative threads to be executed during the current log-
ical instant (reaction) and a second one to be executed at
the next logical instant. The “current” list of threads can
be dynamically enlarged. This is typically the case when a
thread reaches a parallel statement. Thus, the execution of
a reaction step means the execution of all the threads of the
current list until it is made completely empty. The same
way, the execution of a synchronous program means the ex-
ecution of reaction steps until the “next” list of threads is
empty. The second task of the Runtime System is also to
deal with the signal emissions and resets but we shall come
back to this later.

Our compiler generates sequential C code in assembly
style (computed gotos, explicit stack manipulation,...). Each
module in the input language is translated into a C function
that can be executed through the Runtime System. Code
generation rules are given in the following.

5.1 Sequential Statements
The compilation of classical sequential statements follows

a classical compilation scheme [1] using conditional gotos for
if-then-else and do-while statements. We shall simply con-
sider these statements as part of our “high-level assembler”.
In the same way, local variables are referred through their
names rather than FP[i] where FP is the Frame Pointer reg-
ister and i would be the relative address of the concerned
variable in the current frame. New stack frames are allo-
cated when scopes are entered. In our implementation, a
particular care has been taken to reallocate unused frames
through a simple garbage collection mechanism.

Schizophrenia is a usual issue in the compilation of imper-
ative synchronous programs [5]. It comes from the fact that,
because of loops, several instances of a same variable can co-
exist simultaneously (in a same reaction step). The problem
does not arise here thanks to the use of stack frames: each
time a scope is re-entered a new data frame is allocated. The
separation between control and data is at the heart of our
modular compilation technique since it allows to simultane-
ously run several threads sharing the same code but working
on distinct data.

5.2 Parallel Statements
In cooperative multithreading, each thread is responsible

for relinquishing control. This is ensured by the assembly
instruction “stop”. Starting a new thread is done with the
instruction “start pc, fp” where pc is the address of the
first instruction of the started thread and fp is its frame
pointer. The translation of a parallel statements P1 || P2

is then the following:

sync = 2
start FORK_lbl, FP

P1

goto SYNC_lbl

FORK_lbl:
P2

SYNC_lbl:
sync = sync-1
if sync > 0 then
stop

endif

Here“sync” is a local variable used to synchronize P1 and P2

so that the first thread reaching SYNC_lbl is stopped and the
second one goes on. This translation can be easily adapted
for n-ary parallel statements.

5.3 Hierarchical Execution Scheme
The execution of a synchronous program is a succession of

atomic reactions during which threads run in parallel until
reaching a pause statement. In the beginning of each re-
action step, the threads are resumed at the very locations
where the program eventually paused at the end of the previ-
ous reaction. However, not all threads are resumed: because
of abort and suspend statements, the resumption of threads
should actually be performed hierarchically, according to the
structure of the source program and the dynamically fulfilled
conditions. In the following Esterel example:

abort
suspend
P

when C2

when C1

the compilation into assembly code should provide a solu-
tion for hierarchically testing C1 then C2 before executing
P , whatever it comprises of (involving complex parallel com-
positions and/or module instantiations).

5.3.1 Guarded “pause”
Each abort and suspend statement is then responsible

for starting the threads running inside its body. In other
words, each pause statement is guarded by the closest abort
or suspend parent statement or, at the top level, by the
Runtime System. The assembly code for pause statements
is then the following:

RPC = PAUSE_lbl
RFP = FP
FP = FP[0]n

goto parent_guard_lbl
PAUSE_lbl:

where FP[0]n = (FP [0]) . . . [0]| {z }
n times

The context of the thread is saved in two data regis-
ters: the resume point is saved in RPC (Resume Program
Counter) and the current frame pointer in RFP (Resume
Frame Pointer). The frame pointer is then popped of as
many levels (given in n) as to retrieve the frame pointer
of the guarding abort/suspend statement. At the address
parent guard lbl is the code responsible for managing the
paused thread. The values parent guard lbl and n are de-
fined at compile time.
In the following, we shall use the simpler assembly instruc-
tion “pause res” where res is the address where the pause
has to resume at the next reaction step. The “pause res”
instruction is comparable to that of the yield() instruction
of languages implementing coroutines [14] (Java, Python,
Lua...). Thus, the previous code becomes simply:

pause PAUSE_lbl
PAUSE_lbl:

5.3.2 Guard Statements
The task of abort and suspend statements comprises of

guarding the execution of their bodies. Their compilation
has to provide the assembly code for managing the nested
pause statements through the callback mechanism described
before and the data registers RPC and RFP. The compilation
of abort statements produces the following code:

P
goto END_lbl

GUARD_lbl:
if child == [] then
child = (RPC, RFP)::child
pause RESUME_lbl

else
child = (RPC, RFP)::child
stop

endif

RESUME_lbl:
if not(C) then
start_all(child)
child = []
stop

endif

END_lbl:

The assembler block starting at the addresses RESUME_lbl is
responsible for resuming the execution of the paused threads
inside P , under the condition C. Each time a thread of P is
paused, it is added to a list “child” (a local variable stored
in the current frame). These threads shall be passed through
the registers RPC and RFP and managed from the address
GUARD_lbl. This label has to be provided when compiling
pause statements inside P , so that the control jumps to
this very address each time a thread is paused. When the
first thread is registered (child == []), the abort statement
has also to register itself to the parent guard (pause RE-
SUME_lbl). The translation of suspend statements is hardly
different so that when the condition C holds, the paused
threads are not started. Instead, the list is kept and the
suspend statement registers itself again to the parent guard:

RESUME_lbl:
if C then
pause RESUME_lbl

else
start_all(child)
child = []
stop

endif

In the case of the abort statement, P is simply not restarted
and the control flows to the rest of the program.

The translation of weak abort statements is slightly more
complex since the abortion of P has to take place one log-
ical instant later than it would be in the case of an abort
statement. Nevertheless, this translation is similar enough
to that of the abort statement for doing without such extra
details here.

5.4 Modules
The instantiation of synchronous modules can be compiled

as an almost classical function call where caller context and
parameters are passed through a stack frame. The only dif-
ference with respect to the classical function call of sequen-
tial programs is that the guard context has to be stacked
(since the module could be reentered several times along
the successive reactions). The compilation of a module in-
stantiation:

mod_name(p_1, . . . p_m)

is then the following:

SP = new_frame(m+ 4)
SP[0] = RETURN_lbl
SP[1] = FP
SP[2] = parent_guard_lbl
SP[3] = FP[0]n

SP[1 + 3] = p1

. . .
SP[m+ 3] = pm

FP = SP
goto mod_name

RETURN_lbl:

As for pause statements, the value of parent guard lbl and
n are defined at compile time. As to cope with our calling
conventions, the declaration of a module:

module mod_name(S1, . . . Sn)
P

end module

generates the following code:

mod_name:
P
ret = FP[0]
FP = FP[1]
goto ret

GUARD_lbl:
ret = FP[2]
FP = FP[3]
goto ret

Where GUARD_lbl is the parent guard label of the module
body P . It is necessarily provided for the compilation of any
pause, abort or suspend statement of P .

5.5 Dealing with Signals
Over the rigid framework provided by the structural trans-

lation of synchronous modules into cooperative sequential
threads, we shall now provide a solution to deal with run-
time causality induced by signals.

5.5.1 Implementation of Signals
At the end of a reaction step, the status of any signal

has to be either present or absent. Inside a reaction, every
signals but inputs remain undefined until reaching an emit
statement or reaching a state of the program where all po-
tential emissions are discarded.
We propose the following approach: before a signal is read or
tested, we check its status. If it is undefined, then the execu-
tion of the thread is suspended. Each signal maintains a list
of pending threads, so that they are immediately restarted
as soon as a definitive value or status of the signal is de-
termined (observer pattern). For this purpose, we use an
assembly instruction “wait S”, defined as a macro for the
following code:

if S.status == UNDEFINED then
S.pending = (RESUME_lbl, FP)::S.pending
stop

endif
RESUME_lbl:

The emission or absence of a signal is realized through the
assembly instruction “emit S, status, value”, defined as a
macro for the following code:

S.status = status
if status == PRESENT then
S.value = value

endif
start_all(S.pending)

5.5.2 Immediate Reaction to Absence
Reacting to the absence of a signal depends on the global

behavior of the program. Our approach involves the Run-
time System at the top level which maintains a list“pending”
of undefined signals. At some point some signals have to be
declared absent so as to achieve the current reaction step.
However, not all the pending signals can be declared as
absent. Let us consider the following example:

if present(S1) then emit S3 else emit S2
||

if present(S2) then emit S3
||

if present(S3) then emit O

where S1, S2 and S3 are local signals. The execution of this
program leads to a point where the threads are blocked on
these signals. At this very point, only S1 is safe to be set
absent since S2 and S3 still have potential emitters.

5.5.3 Potential Emissions
Our solution relies on a local knowledge of the potentially

emitted signals at each point of the program [22]. We use
reference counters on signal to indicate which signal can be
safely set absent. We introduce the instructions “can S”
to mark a signal as possibly emitted in the current thread
(S.refcount = S.refcount+1). We introduce the instruc-
tion “cannot S” to mark that the control just reached a
point where a signal cannot be emitted any more in the
current instant and by the current thread (S.refcount =
S.refcount-1). This strategy complies with the definition
of our Potential Function given in section 2.

5.5.4 Reference Counter Policy
At compile time, we locally compute the set of potentially

emitted signals for each statement of the program. We then
generate the can statements at each resumption point of the
program (i.e for each pause statement), so that a thread
immediately declares its potentially emitted signals as soon
as it is started or resumed. Finally, we generate the cannot
statements at each point of the target code where the set of
potential emissions decreases. For example, the insertion of
can and cannot statements in the code of the figure 1.a will
produce the code of the figure 1.b.

pause

emit A

if present(S) then

emit B

else

emit C

pause

pause;
can A; can B; can C
emit A
cannot A
if present(S) then
cannot C
emit B
cannot B

else
cannot B
emit C
cannot C

pause

(a) (b)

Figure 1: Insertion of can and cannot statements.

A signal can thus be safely declared absent when its ref-
erence counter is equal to zero and when the list of ac-
tive threads is empty (which means that any active threads

had the opportunity to increase the reference counter of the
concerned signals before suspending their execution). The
global information about the potentially emitted signals is
thus obtained by the execution of all the active threads pro-
viding local partial information. This strategy for the gen-
eration of can and cannot instructions is not unique and
leaves room for optimizations.

In the context of a modular execution, the correct compi-
lation of programs requires some minimal knowledge about
the modules. So as to identify the potentially emitted sig-
nals, we then need to know:

1. which parameters can be emitted at the first reaction
of the module and

2. if the module can be instantaneous.

This information can be carried by a type system and stored
in a header file. When a module is about to return, it also
requires the list of signals that are potentially emitted by the
caller after the termination of the callee. This information
is actually passed on stack frames.

5.6 Higher-Order Modules
The main originality of this approach with respect to the

related others lies in that the scheduling of the program
blocks is not settled statically at compile time. Furthermore,
the possibility of compiling synchronous modules as “black
boxes” offers us the key for seamlessly introducing higher-
order modules in imperative synchronous languages. For
our compiler indeed, a module is a simple pointer Modules
can thus be transmitted through signals and be instantiated
from a signal value easily.

6. EXPERIMENTAL RESULTS
We developed a lightweight compiler based on these works

called fnec that generates C-code. We use a standard ex-
tension to the C language known as “computed goto”, where
program labels can be handled as any (void*) pointers. We
tested our compiler on many little examples and on the stan-
dard wristwatch example (see table 2). The generated code
is quite big and slow, which is not a surprise considering that
no effort was made for performance. The C code generation
however is itself very fast.

These experimental results are more illustrative than rel-
evant since our unique motivation was the introduction of
higher-order modules in Esterel. In future works, efficient
techniques [21, 15] shall be used to improve the execution
speed of our modular code.

7. CONCLUSION
We presented an extension of the Esterel language for the

introduction of higher-order modules. The benefit of it lies
in its increased flexibility and its ability to better design syn-
chronous systems. Constructiveness issues are managed by
the mean of a type system indicating the potentially emit-
ted signals of the modules. This extension has been im-
plemented as a lightweight compiler generating sequential
software (C) code.

As future works, we plan to use static analysis techniques
to infer as much type information as possible. The idea
would be to exploit a graph describing possible instanta-
neous dependencies between signals. Then, depending on
the program locations where higher-order modules are in-
stantiated, infer as much as possible which parameters are
safe to be emitted in the first reaction and if the module can
safely terminate instantaneously. We shall also investigate
code migration as the next-step extension of Esterel. The
principle would be to start a module somewhere in the pro-
gram, then suspend its execution and resume it at another

example size of files compilation time execution time
source (.strl) target (.c) binary (.o) .strl → .c (fnec) .c → .o (gcc) (106 reactions)

ABRO 0.20 KB 5.45 KB 8.73 KB 0 s 0.22 s 2.10 s
A10RO 0.45 KB 8.51 KB 12.46 KB 0 s 0.30 s 1.98 s
arbiter4 1.04 KB 13.86 KB 23.09 KB 0 s 0.63 s 19.11 s
arbiter8 1.48 KB 19.91 KB 34.94 KB 0.01 s 1.03 s 36.81 s
wristwatch 25.1 KB 268.7 KB 276.7 KB 0.20 s 7.31 s 37.21 s

Figure 2: Experimental results on some Esterel programs

location in the code. Actually, such an extension would be
quite easy to implement in our higher-order-tolerant com-
piler. The challenge lies mainly in finding the best (sim-
plest) way to express migration in Esterel without conflicting
with the existing constructs of the language. On a technical
level, we also plan to consider dynamically reconfigurable
components like FPGAs as a target for our higher-order Es-
terel compiler. The instantiation of a higher-order module
would then be the result of an on-the-fly hardware copy of
the instantiated module together with a connection of the
parameters signals to the sockets of the module.

8. REFERENCES
[1] A. Aho, R. Sethi, and J. Ullman. Compilers:

Principles, Techniques, and Tools. Addison-Wesley,
1986.

[2] J. Armstrong, R. Virding, C. Wikström, and
M. Williams. Concurrent Programming in ERLANG.
Prentice Hall, Englewood Cliffs, New Jersey 07632,
1996.

[3] A. Benveniste, P. Le Guernic, and P. Aubry.
Compositionality in dataflow synchronous languages:
Specification & code generation. Research Report
3310, INRIA, November 1997.

[4] G. Berry. A hardware implementation of pure Esterel.
In Workshop on Formal Methods in VLSI Design,
Miami, Florida, 1991.

[5] G. Berry. The constructive semantics of pure Esterel.
http://www-sop.inria.fr/esterel.org, July 1999.

[6] G. Berry and G. Gonthier. The Esterel synchronous
programming language: Design, semantics,
implementation. Science of Computer Programming,
19(2):87–152, 1992.

[7] G. Boudol. ULM: a core programming model for
global computing. In European Symposium on
Programming, ESOP’04, Barcelona, Spain, April 2004.

[8] F. Boussinot. SugarCubes implementation of causality.
Research Report 3487, INRIA, September 1998.

[9] F. Boussinot and J.-F. Susini. The SugarCubes tool
box: a reactive Java framework. Software-Practice and
Experience, 28(14):1531–1550, December 1998.

[10] E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma,
and J.-B. Stefani. An open component model and its
support in Java. In Int. Symposium on Component
Based Software Engineering, CBSE’04, Edinburgh,
Scotland, May 2004.

[11] P. Caspi and M. Pouzet. Synchronous Kahn networks.
In Conference on Functional Programming (ICFP),
pages 226–238, Philadelphia, USA, 1996. ACM.

[12] E. Closse, M. Poize, J. Pulou, P. Venier, and D. Weil.
SAXO-RT: Interpreting Esterel semantics on a
sequential execution structure. Electronic Notes in
Theoretical Computer Science (ENTCS), 65(5), 2002.

[13] J.-L. Colaço, A. Girault, G. Hamon, and M. Pouzet.
Towards a higher-order synchronous data-flow
language. In G. Buttazzo, editor, International

Conference on Embedded Software, EMSOFT’04,
pages 230–239, Pisa, Italy, September 2004. ACM,
New-York.

[14] M. Conway. Design of a separable transition-diagram
compiler. Communications of the ACM, 6(7), July
1963.

[15] S. Edwards. An Esterel compiler for large
control-dominated systems. IEEE Transactions on
Computer Aided Design of Integrated Circuits and
Systems, 21(2):169–183, February 2002.

[16] O. Hainque, L. Pautet, Y. Le Biannic, and E. Nassor.
Cronos: A separate compilation toolset for modular
Esterel applications. In Formal Methods, World
Congress on Formal Methods in the Development of
Computing Systems, Toulouse, France, 1999.

[17] L. Hazard, J.-F. Susini, and F. Boussinot. The Junior
reactive kernel. Research Report 3732, INRIA, July
1999.

[18] R. Lublinerman and S. Tripakis. Modularity vs.
reusability: Code generation from synchronous block
diagrams. In Design, Automation and Test in Europe
(DATE), 2008.

[19] R. Milner. Communicating and Mobile Systems: the
Pi-Calculus. Cambridge University Press, June 1999.

[20] K. Moessner, S. Hope, P. Cook, W. Tuttlebee, and
R. Tafazolli. The RMA - a framework for
reconfiguration of SDR equipement. IEICE Trans. on
Communications, E85-B(12):2573–2580, December
2002.

[21] D. Potop-Butucaru and R. de Simone. Optimizations
for faster execution of Esterel programs. In
International Conference on Formal Methods and
Models for Co-Design (MEMOCODE), Mont
Saint-Michel, France, 2003.

[22] D. Potop-Butucaru, S. Edwards, and G. Berry.
Compiling Esterel. Springer, 2007.

[23] G. Rose. Authentication and security in mobile
phones. In Australian Unix Users Group conference,
AUUG99, Melbourne, Australia, September 1999.

[24] K. Schneider, J. Brandt, and E. Vecchié. Modular
compilation of synchronous programs. In IFIP
Conference on Distributed and Parallel Embedded
Systems (DIPES), Braga, Portugal, 2006.

[25] J.-P. Talpin and D. Nowak. A synchronous semantics
of higher-order processes for modeling reconfigurable
reactive systems. In Proceedings of the 18th
Conference on Foundations of Software Technology
and Theoretical Computer Science, pages 78–89,
London, UK, 1998. Springer-Verlag.

[26] J. Zeng and S. Edwards. Separate compilation for
synchronous modules. In International Conference on
Embedded Software and Systems (ICESS), Xian,
China, 2005.

